login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A241027 Smallest prime numbers p of length n having a decimal expansion x(1)x(2)... x(n) such that there exists an index j where x(j) = 1 and x(i) = 7 for i<>j, or 0 if no such prime exists. 2
17, 0, 1777, 71777, 0, 0, 77777177, 0, 1777777777, 71777777777, 0, 7177777777777, 17777777777777, 0, 7717777777777777, 0, 0, 7777177777777777777, 71777777777777777777, 0, 7777717777777777777777, 77717777777777777777777, 0, 7777771777777777777777777 (list; graph; refs; listen; history; text; internal format)
OFFSET

2,1

COMMENTS

The corresponding index of the decimal digit 1 are 1, 0, 1, 2, 0, 0, 6, 0, 1, 2, 0, 2, 1, 0, 3, 0, 0, 5, 2,...(A241020).

LINKS

Michel Lagneau, Table of n, a(n) for n = 2..150

MAPLE

with(numtheory):nn:=80:T:=array(1..nn):

   for n from 2 to nn do:

     for i from 1 to n do:

     T[i]:=7:

     od:

       ii:=0:

       for j from 1 to n while(ii=0)do:

       T[j]:=1:s:=sum('T[i]*10^(n-i)', 'i'=1..n):

         if type(s, prime)=true

         then

         ii:=1: printf(`%d, `, s):

         else

         T[j]:=7:

         fi:

       od:

          if ii=0

           then

           printf(`%d, `, 0):

           else

          fi:

     od:

CROSSREFS

Cf. A241018, A241019, A241020, A241022.

Sequence in context: A198631 A185685 A144692 * A176728 A088469 A089170

Adjacent sequences:  A241024 A241025 A241026 * A241028 A241029 A241030

KEYWORD

nonn,base

AUTHOR

Michel Lagneau, Apr 15 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 23 00:33 EST 2017. Contains 295107 sequences.