OFFSET
2,4
COMMENTS
Previous name: Let x(1)x(2)... x(n) denote the decimal expansion of a number p having an index j such that x(j) = 1 and x(i) = 7 for i <> j. The sequence lists the smallest index j such that p is prime, or 0 if no such prime exists.
Except 0, the corresponding primes are 17, 0, 1777, 71777, 0, 0, 77777177, 0, 1777777777, 71777777777, 0, 7177777777777, 17777777777777, 0, 7717777777777777, 0, 0, 7777177777777777777, ... .
LINKS
Robert Israel, Table of n, a(n) for n = 2..4000
FORMULA
a(n) = 0 when 7*(n-1) + 1 mod 3 = 0. - Michael S. Branicky, Jun 02 2024
MAPLE
with(numtheory):nn:=80:T:=array(1..nn):
for n from 2 to nn do:
for i from 1 to n do:
T[i]:=7:
od:
ii:=0:
for j from 1 to n while(ii=0)do:
T[j]:=1:s:=sum('T[i]*10^(n-i)', 'i'=1..n):
if type(s, prime)=true
then
ii:=1: printf(`%d, `, j):
else
T[j]:=7:
fi:
od:
if ii=0
then
printf(`%d, `, 0):
else
fi:
od:
MATHEMATICA
Flatten[Position[IntegerDigits[#], 1]&/@Table[Select[FromDigits/@Permutations[ Join[ {1}, PadRight[ {}, n, 7]]], PrimeQ]/.{}->{0, 0}, {n, 80}][[;; , 1]]/.{}->0] (* Harvey P. Dale, Jul 21 2024 *)
PROG
(Python)
from sympy import isprime
def a(n):
if (1+7*(n-1))%3 == 0:
return 0
base = (10**n-1)//9*7
for j in range(1, n+1):
t = base - 6*10**(n-j)
if isprime(t):
return j
return 0
print([a(n) for n in range(2, 81)]) # Michael S. Branicky, Jun 02 2024
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Michel Lagneau, Apr 15 2014
EXTENSIONS
Name simplified by Michael S. Branicky, Jun 02 2024
STATUS
approved