login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A241020
a(n) is the smallest j such that the n-digit number consisting of a 1 in position j and 7's in the other n-1 positions is a prime, or 0 if no such prime exists.
6
1, 0, 1, 2, 0, 0, 6, 0, 1, 2, 0, 2, 1, 0, 3, 0, 0, 5, 2, 0, 6, 4, 0, 7, 4, 0, 12, 0, 0, 19, 8, 0, 26, 5, 0, 0, 33, 0, 6, 11, 0, 1, 23, 0, 18, 34, 0, 15, 0, 0, 1, 22, 0, 1, 50, 0, 32, 15, 0, 15, 25, 0, 21, 10, 0, 29, 47, 0, 0, 11, 0, 56, 14, 0, 2, 0, 0, 54, 3
OFFSET
2,4
COMMENTS
Previous name: Let x(1)x(2)... x(n) denote the decimal expansion of a number p having an index j such that x(j) = 1 and x(i) = 7 for i <> j. The sequence lists the smallest index j such that p is prime, or 0 if no such prime exists.
Except 0, the corresponding primes are 17, 0, 1777, 71777, 0, 0, 77777177, 0, 1777777777, 71777777777, 0, 7177777777777, 17777777777777, 0, 7717777777777777, 0, 0, 7777177777777777777, ... .
LINKS
FORMULA
a(n) = 0 when 7*(n-1) + 1 mod 3 = 0. - Michael S. Branicky, Jun 02 2024
MAPLE
with(numtheory):nn:=80:T:=array(1..nn):
for n from 2 to nn do:
for i from 1 to n do:
T[i]:=7:
od:
ii:=0:
for j from 1 to n while(ii=0)do:
T[j]:=1:s:=sum('T[i]*10^(n-i)', 'i'=1..n):
if type(s, prime)=true
then
ii:=1: printf(`%d, `, j):
else
T[j]:=7:
fi:
od:
if ii=0
then
printf(`%d, `, 0):
else
fi:
od:
MATHEMATICA
Flatten[Position[IntegerDigits[#], 1]&/@Table[Select[FromDigits/@Permutations[ Join[ {1}, PadRight[ {}, n, 7]]], PrimeQ]/.{}->{0, 0}, {n, 80}][[;; , 1]]/.{}->0] (* Harvey P. Dale, Jul 21 2024 *)
PROG
(Python)
from sympy import isprime
def a(n):
if (1+7*(n-1))%3 == 0:
return 0
base = (10**n-1)//9*7
for j in range(1, n+1):
t = base - 6*10**(n-j)
if isprime(t):
return j
return 0
print([a(n) for n in range(2, 81)]) # Michael S. Branicky, Jun 02 2024
CROSSREFS
Sequence in context: A205974 A098643 A193474 * A277444 A274710 A028625
KEYWORD
nonn,base
AUTHOR
Michel Lagneau, Apr 15 2014
EXTENSIONS
Name simplified by Michael S. Branicky, Jun 02 2024
STATUS
approved