OFFSET
0,4
COMMENTS
LINKS
Peter Luschny, Orbitals
FORMULA
For even n>0: T(n,k) = 2*C(n/2-1,(k-1+mod(k-1,2))/2)*C(n/2-1,(k-1-mod(k-1,2))/2) for k=0..n-1 (from A152659).
EXAMPLE
Triangle read by rows, n>=0. The length of row n is n for n>=1.
[n] [k=0,1,2,...] [row sum]
[0] [1] 1
[1] [1] 1
[2] [0, 2] 2
[3] [0, 0, 6] 6
[4] [0, 2, 2, 2] 6
[5] [0, 0, 6, 12, 12] 30
[6] [0, 2, 4, 8, 4, 2] 20
[7] [0, 0, 6, 24, 52, 40, 18] 140
[8] [0, 2, 6, 18, 18, 18, 6, 2] 70
[9] [0, 0, 6, 36, 120, 180, 180, 84, 24] 630
T(5,2) = 6 because the six orbitals [-1, -1, 0, 1, 1], [-1, -1, 1, 1, 0], [0, -1, -1, 1, 1], [0, 1, 1, -1, -1], [1, 1, -1, -1, 0], [1, 1, 0, -1, -1] make 2 turns.
PROG
(Sage) # uses[unit_orbitals from A274709]
# Brute force counting
def orbital_turns(n):
if n == 0: return [1]
S = [0]*(n)
for u in unit_orbitals(n):
L = sum(0 if sgn(u[i]) == sgn(u[i+1]) else 1 for i in (0..n-2))
S[L] += 1
return S
for n in (0..12): print(orbital_turns(n))
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Peter Luschny, Jul 10 2016
STATUS
approved