login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A274710
A statistic on orbital systems over n sectors: the number of orbitals which make k turns.
10
1, 1, 0, 2, 0, 0, 6, 0, 2, 2, 2, 0, 0, 6, 12, 12, 0, 2, 4, 8, 4, 2, 0, 0, 6, 24, 52, 40, 18, 0, 2, 6, 18, 18, 18, 6, 2, 0, 0, 6, 36, 120, 180, 180, 84, 24, 0, 2, 8, 32, 48, 72, 48, 32, 8, 2, 0, 0, 6, 48, 216, 480, 744, 672, 432, 144, 30, 0, 2, 10, 50, 100, 200, 200, 200, 100, 50, 10, 2
OFFSET
0,4
COMMENTS
The definition of an orbital system is given in A232500 (see also the illustration there). The number of orbitals over n sectors is counted by the swinging factorial A056040.
A 'turn' of an orbital w takes place where signum(w[i]) is not equal to signum(w[i+1]).
A152659 is a subtriangle.
FORMULA
For even n>0: T(n,k) = 2*C(n/2-1,(k-1+mod(k-1,2))/2)*C(n/2-1,(k-1-mod(k-1,2))/2) for k=0..n-1 (from A152659).
EXAMPLE
Triangle read by rows, n>=0. The length of row n is n for n>=1.
[n] [k=0,1,2,...] [row sum]
[0] [1] 1
[1] [1] 1
[2] [0, 2] 2
[3] [0, 0, 6] 6
[4] [0, 2, 2, 2] 6
[5] [0, 0, 6, 12, 12] 30
[6] [0, 2, 4, 8, 4, 2] 20
[7] [0, 0, 6, 24, 52, 40, 18] 140
[8] [0, 2, 6, 18, 18, 18, 6, 2] 70
[9] [0, 0, 6, 36, 120, 180, 180, 84, 24] 630
T(5,2) = 6 because the six orbitals [-1, -1, 0, 1, 1], [-1, -1, 1, 1, 0], [0, -1, -1, 1, 1], [0, 1, 1, -1, -1], [1, 1, -1, -1, 0], [1, 1, 0, -1, -1] make 2 turns.
PROG
(Sage) # uses[unit_orbitals from A274709]
# Brute force counting
def orbital_turns(n):
if n == 0: return [1]
S = [0]*(n)
for u in unit_orbitals(n):
L = sum(0 if sgn(u[i]) == sgn(u[i+1]) else 1 for i in (0..n-2))
S[L] += 1
return S
for n in (0..12): print(orbital_turns(n))
CROSSREFS
Cf. A056040 (row sum), A152659, A232500.
Other orbital statistics: A241477 (first zero crossing), A274706 (absolute integral), A274708 (number of peaks), A274709 (max. height), A274878 (span), A274879 (returns), A274880 (restarts), A274881 (ascent).
Sequence in context: A193474 A241020 A277444 * A028625 A344441 A221728
KEYWORD
nonn,tabf
AUTHOR
Peter Luschny, Jul 10 2016
STATUS
approved