OFFSET
1,4
FORMULA
a(2*n+1) = A001791(n) for n>=0.
a(2*n+2) = A002457(n) for n>=0.
(-1)^(n+1)*a(2*n+1) = A158500(n+1) for n>=1.
G.f.: (2*x^3 + (4*x^2-1)*(2*x^2 -1 + sqrt(1-4*x^2)))/(2*x*(1-4*x^2)^(3/2)). - Benedict W. J. Irwin, Aug 15 2016
D-finite with recurrence: -(n-2)*(n+1)*(n^3-3*n^2-2*n+12)*a(n) -4*n*(n-1)*(2*n-7)*a(n-1) +4*(n-1)*(n-2)*(n^3-5*n+8)*a(n-2)=0. - R. J. Mathar, Oct 07 2016
MAPLE
a := proc(n) ((n-1)!/iquo(n-1, 2)!^2);
if n::even then % else % * (n-1)/(n+1) fi end:
seq(a(n), n=1..35);
MATHEMATICA
CoefficientList[Series[(2 x^3 + (-1 + 4 x^2) (-1 + 2 x^2 + Sqrt[1 - 4 x^2]))/(2 x (1 - 4 x^2)^(3/2)), {x, 0, 20}], x] (* Benedict W. J. Irwin, Aug 15 2016 *)
Table[If[EvenQ@ n, #, # (n - 1)/(n + 1)] &@((n - 1)!/Floor[(n - 1)/2]!^2), {n, 35}] (* Michael De Vlieger, Aug 15 2016 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Peter Luschny, Jul 08 2016
STATUS
approved