login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A274707
a(n) = A(n) if n is even else a(n) = A(n)*(n-1)/(n+1) with A(n) = ((n-1)!/ floor((n-1)/2)!^2).
0
0, 1, 1, 6, 4, 30, 15, 140, 56, 630, 210, 2772, 792, 12012, 3003, 51480, 11440, 218790, 43758, 923780, 167960, 3879876, 646646, 16224936, 2496144, 67603900, 9657700, 280816200, 37442160, 1163381400, 145422675, 4808643120, 565722720, 19835652870, 2203961430
OFFSET
1,4
FORMULA
a(2*n+1) = A001791(n) for n>=0.
a(2*n+2) = A002457(n) for n>=0.
(-1)^(n+1)*a(2*n+1) = A158500(n+1) for n>=1.
G.f.: (2*x^3 + (4*x^2-1)*(2*x^2 -1 + sqrt(1-4*x^2)))/(2*x*(1-4*x^2)^(3/2)). - Benedict W. J. Irwin, Aug 15 2016
D-finite with recurrence: -(n-2)*(n+1)*(n^3-3*n^2-2*n+12)*a(n) -4*n*(n-1)*(2*n-7)*a(n-1) +4*(n-1)*(n-2)*(n^3-5*n+8)*a(n-2)=0. - R. J. Mathar, Oct 07 2016
MAPLE
a := proc(n) ((n-1)!/iquo(n-1, 2)!^2);
if n::even then % else % * (n-1)/(n+1) fi end:
seq(a(n), n=1..35);
MATHEMATICA
CoefficientList[Series[(2 x^3 + (-1 + 4 x^2) (-1 + 2 x^2 + Sqrt[1 - 4 x^2]))/(2 x (1 - 4 x^2)^(3/2)), {x, 0, 20}], x] (* Benedict W. J. Irwin, Aug 15 2016 *)
Table[If[EvenQ@ n, #, # (n - 1)/(n + 1)] &@((n - 1)!/Floor[(n - 1)/2]!^2), {n, 35}] (* Michael De Vlieger, Aug 15 2016 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Peter Luschny, Jul 08 2016
STATUS
approved