OFFSET
0,2
COMMENTS
a(n) = T(0,n) and differences T(n,k) = T(n-1,k+1) - T(n-1,k) define the array
0, 6, 4, 30, 3, 70, 24, 126, 10, 198, 60, 286, 21, 390, ..
6, -2, 26, -27, 67, -46, 102, -116, 188, -138, 226, -265, 369, -278, ..
-8, 28 -53, 94, -113, 148, -218, 304, -326, 364, -491, 634, -647, 676, ...
T(3,n) mod 9 is the sequence 1, 1, 1, 4, 4, 4, 7, 7, 7, 4, 4, 4 (and periodically repeated with period 12).
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (0,0,0,3,0,0,0,-3,0,0,0,1).
FORMULA
a(n) = 3*a(n-4) - 3*a(n-8) + a(n-12).
G.f.: x*(6+4*x+30*x^2+3*x^3+52*x^4+12*x^5+36*x^6+x^7+6*x^8-2*x^10) /( (1-x)^3 *(1+x)^3 *(1+x^2)^3 ). - R. J. Mathar, Jun 17 2011
Let BEB(n) = a(n)/A061038(n+2) = A060819(n)/A145979(n). Then (BEB(n))^2 = A181318(n)/A061038(n+2) = BEB(n) - A061037(n+2)/A061038(n+2). - Paul Curtz, Jul 19 2011, index corrected by R. J. Mathar, Sep 09 2011
From Luce ETIENNE, Apr 18 2017: (Start)
a(n) = n*(n + 2)*(37 - 27*(-1)^n - 3*((-1)^((2*n + 1 - (-1)^n)/4) + (-1)^((2*n - 1 + (-1)^n)/4)))/32.
a(n) = n*(n+2)*(37-27*cos(n*Pi) - 6*cos(n*Pi/2))/32.
a(n) = n*(n + 2)*(37 - 27*(-1)^n - 3*(i^n + (-i)^n))/32, where i=sqrt(-1). (End)
MATHEMATICA
Table[Which[OddQ@ n, 2 (1 + 2 #) (3 + 2 #) &[(n - 1)/2], Mod[n, 4] == 0, # (1 + 2 #) &[n/4], True, 4 (1 + #) (1 + 2 #) &[(n - 2)/4]], {n, 0, 60}] (* or *)
CoefficientList[Series[x(6 +4x +30x^2 +3x^3 +52x^4 +12x^5 +36x^6 +x^7 +6x^8 -2x^10)/((1-x)^3*(1+x)^3*(1+x^2)^3), {x, 0, 60}], x] (* Michael De Vlieger, Apr 22 2017 *)
LinearRecurrence[{0, 0, 0, 3, 0, 0, 0, -3, 0, 0, 0, 1}, {0, 6, 4, 30, 3, 70, 24, 126, 10, 198, 60, 286}, 80] (* Vincenzo Librandi, Apr 23 2017 *)
PROG
(Magma) I:=[0, 6, 4, 30, 3, 70, 24, 126, 10, 198, 60, 286]; [n le 12 select I[n] else 3*Self(n-4)-3*Self(n-8)+Self(n-12): n in [1..60]]; // Vincenzo Librandi, Apr 23 2017
(PARI) m=60; v=concat([0, 6, 4, 30, 3, 70, 24, 126, 10, 198, 60, 286], vector(m-12)); for(n=13, m, v[n]=3*v[n-4]-3*v[n-8]+v[n-12]); v \\ G. C. Greubel, Feb 26 2019
(Sage) (x*(6+4*x+30*x^2+3*x^3+52*x^4+12*x^5+36*x^6+x^7+6*x^8-2*x^10)/((1-x)^3 *(1+x)^3*(1+x^2)^3 )).series(x, 60).coefficients(x, sparse=False) # G. C. Greubel, Feb 26 2019
(GAP) a:=[0, 6, 4, 30, 3, 70, 24, 126, 10, 198, 60, 286];; for n in [13..60] do a[n]:= 3*a[n-4]-3*a[n-8]+a[n-12]; od; a; # G. C. Greubel, Feb 26 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Paul Curtz, Jun 12 2011
STATUS
approved