login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A191565
G.f. satisfies: A(A(x))^2 = A(x)^2 + 4*x^3.
1
1, 2, -14, 184, -3194, 65472, -1503924, 37593664, -1004163802, 28314667072, -835650200380, 25652840146624, -815280469973380, 26728163562423360, -901336722528156712, 31194183364269262848, -1105930698812430437626
OFFSET
1,2
EXAMPLE
G.f.: A(x) = x + 2*x^2 - 14*x^3 + 184*x^4 - 3194*x^5 + 65472*x^6 +...
Illustrate A(A(x))^2 - A(x)^2 = 4*x^3 with the expansions:
A(x)^2 = x^2 + 4*x^3 - 24*x^4 + 312*x^5 - 5456*x^6 + 113016*x^7 +...
A(A(x))^2 = x^2 + 8*x^3 - 24*x^4 + 312*x^5 - 5456*x^6 + 113016*x^7 +...
A(A(x)) = x + 4*x^2 - 20*x^3 + 236*x^4 - 3872*x^5 + 76716*x^6 - 1723488*x^7 +...
Let R(x) be the series reversion of A(x):
R(x) = x - 2*x^2 + 22*x^3 - 364*x^4 + 7390*x^5 - 170556*x^6 +...
R(x)^3 = x^3 - 6*x^4 + 78*x^5 - 1364*x^6 + 28254*x^7 - 655668*x^8 +...
where A(x)^2 = x^2 + 4*R(x)^3.
PROG
(PARI) {a(n)=local(A=x+x^2+x*O(x^n)); for(i=1, n, A=A-(subst(A, x, A)-x*sqrt(4*x+A^2/x^2))); polcoeff(A, n)}
CROSSREFS
Cf. A191557, 107700, A138740.
Sequence in context: A258872 A372246 A000807 * A191236 A217905 A370940
KEYWORD
sign
AUTHOR
Paul D. Hanna, Jun 06 2011
STATUS
approved