OFFSET
1,2
EXAMPLE
G.f.: A(x) = x + 2*x^2 - 14*x^3 + 184*x^4 - 3194*x^5 + 65472*x^6 +...
Illustrate A(A(x))^2 - A(x)^2 = 4*x^3 with the expansions:
A(x)^2 = x^2 + 4*x^3 - 24*x^4 + 312*x^5 - 5456*x^6 + 113016*x^7 +...
A(A(x))^2 = x^2 + 8*x^3 - 24*x^4 + 312*x^5 - 5456*x^6 + 113016*x^7 +...
A(A(x)) = x + 4*x^2 - 20*x^3 + 236*x^4 - 3872*x^5 + 76716*x^6 - 1723488*x^7 +...
Let R(x) be the series reversion of A(x):
R(x) = x - 2*x^2 + 22*x^3 - 364*x^4 + 7390*x^5 - 170556*x^6 +...
R(x)^3 = x^3 - 6*x^4 + 78*x^5 - 1364*x^6 + 28254*x^7 - 655668*x^8 +...
where A(x)^2 = x^2 + 4*R(x)^3.
PROG
(PARI) {a(n)=local(A=x+x^2+x*O(x^n)); for(i=1, n, A=A-(subst(A, x, A)-x*sqrt(4*x+A^2/x^2))); polcoeff(A, n)}
CROSSREFS
KEYWORD
sign
AUTHOR
Paul D. Hanna, Jun 06 2011
STATUS
approved