The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A191566 a(n) = 7*a(n-1) + (-1)^n*6*2^(n-1). 1
 1, 1, 19, 109, 811, 5581, 39259, 274429, 1921771, 13450861, 94159099, 659107549, 4613765131, 32296331341, 226074368539, 1582520481469, 11077643566891, 77543504575021, 542804532811579, 3799631728108189 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS A007283(n) = 3*2^n. A091629(n+1) = 6*2^n. a(n) + a(n+2) = 10 * (b(n) = 2, 11, 83, 569, 4007, ...). b(n+1) = 7*b(n) - (-1)^n*3*2^n. Inverse binomial transform of A007613(n). LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..300 Index entries for linear recurrences with constant coefficients, signature (5,14). FORMULA a(n+1) - a(n) = 18 * (0 followed by A053573(n)). a(n) = (7^n + 2*(-2)^n)/3. - Charles R Greathouse IV, Jun 06 2011 G.f.: (1-4*x)/(1 - 5*x - 14*x^2). - Bruno Berselli, Jun 07 2011 a(n) = 5*a(n-1) + 14*a(n-2). MATHEMATICA LinearRecurrence[{5, 14}, {1, 1}, 40] (* Harvey P. Dale, Mar 01 2017 *) CoefficientList[Series[(1 - 4*x)/(1 - 5*x - 14*x^2), {x, 0, 20}], x] (* Stefano Spezia, Sep 12 2018 *) PROG (PARI) a(n)=(7^n+2*(-2)^n)/3 \\ Charles R Greathouse IV, Jun 06, 2011 (MAGMA) [(7^n+2*(-2)^n)/3: n in [0..30]]; // Vincenzo Librandi, Jun 07 2011 CROSSREFS Sequence in context: A243761 A184056 A280628 * A118607 A144246 A281170 Adjacent sequences:  A191563 A191564 A191565 * A191567 A191568 A191569 KEYWORD nonn,easy AUTHOR Paul Curtz, Jun 06 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 6 15:30 EDT 2022. Contains 355110 sequences. (Running on oeis4.)