login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A191566
a(n) = 7*a(n-1) + (-1)^n*6*2^(n-1).
1
1, 1, 19, 109, 811, 5581, 39259, 274429, 1921771, 13450861, 94159099, 659107549, 4613765131, 32296331341, 226074368539, 1582520481469, 11077643566891, 77543504575021, 542804532811579, 3799631728108189
OFFSET
0,3
COMMENTS
A007283(n) = 3*2^n. A091629(n+1) = 6*2^n.
a(n) + a(n+2) = 10 * (b(n) = 2, 11, 83, 569, 4007, ...).
b(n+1) = 7*b(n) - (-1)^n*3*2^n.
Inverse binomial transform of A007613(n).
FORMULA
a(n+1) - a(n) = 18 * (0 followed by A053573(n)).
a(n) = (7^n + 2*(-2)^n)/3. - Charles R Greathouse IV, Jun 06 2011
G.f.: (1-4*x)/(1 - 5*x - 14*x^2). - Bruno Berselli, Jun 07 2011
a(n) = 5*a(n-1) + 14*a(n-2).
MATHEMATICA
LinearRecurrence[{5, 14}, {1, 1}, 40] (* Harvey P. Dale, Mar 01 2017 *)
CoefficientList[Series[(1 - 4*x)/(1 - 5*x - 14*x^2), {x, 0, 20}], x] (* Stefano Spezia, Sep 12 2018 *)
PROG
(PARI) a(n)=(7^n+2*(-2)^n)/3 \\ Charles R Greathouse IV, Jun 06, 2011
(Magma) [(7^n+2*(-2)^n)/3: n in [0..30]]; // Vincenzo Librandi, Jun 07 2011
CROSSREFS
Sequence in context: A243761 A184056 A280628 * A118607 A144246 A281170
KEYWORD
nonn,easy
AUTHOR
Paul Curtz, Jun 06 2011
STATUS
approved