login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A280628
E.g.f. C(x) + S(x), such that: C(x)^2 - S(x)^2 = 1 and D(x)^4 - S(x)^4 = 1, where functions S(x), C(x), and D(x) are described by A280625, A280626, and A280627, respectively.
5
1, 1, 1, 1, 1, 19, 109, 739, 3889, 35641, 292681, 3753721, 37275121, 500577499, 5709311029, 91718242219, 1254902705569, 22737318482161, 350061261777361, 6983681901945841, 120872805166945441, 2676021948941279779, 51564789352080559549, 1243547540389481251699, 26284030671328082426449, 686920343453752746986281, 15848108292907342195314841, 446624144083900575607651561
OFFSET
0,6
LINKS
FORMULA
E.g.f. C(x) + S(x) = Sum_{n>=0} a(n)*x^n/n!, where related functions S = S(x), C = C(x), and D = D(x) possess the following properties.
(1.a) C^2 - S^2 = 1.
(1.b) D^4 - S^4 = 1.
Integrals.
(2.a) S = Integral C*D^3 dx.
(2.b) C = 1 + Integral S*D^3 dx.
(2.c) D = 1 + Integral C*S^3 dx.
(2.d) C + S = 1 + Integral D^3 * (C + S) dx.
(2.e) D^2 + S^2 = 1 + Integral 2*S*C*D * (D^2 + S^2) dx.
(2.f) D - S = 1 - Integral C * (D^3 - S^3) dx.
Exponential.
(3.a) C + S = exp( Integral D^3 dx ).
(3.b) D^2 + S^2 = exp( Integral 2*S*C*D dx ).
(3.d) C = cosh( Integral D^3 dx ).
(3.e) S = sinh( Integral D^3 dx ).
(3.f) D^2 = cosh( Integral 2*S*C*D dx ).
(3.g) S^2 = sinh( Integral 2*S*C*D dx ).
(3.h) sinh( Integral D^3 dx )^2 = sinh( Integral 2*S*C*D dx ).
Derivatives.
(4.a) S' = C*D^3.
(4.b) C' = S*D^3.
(4.c) D' = C*S^3.
(4.d) (C' + S')/(C + S) = D^3.
(4.e) (D^2 + S^2)'/(D^2 + S^2) = 2*S*C*D.
(4.f) (D' - S')/(D - S) = -C * (D^2 + D*S + S^2).
EXAMPLE
E.g.f.: C(x) + S(x) = 1 + x + x^2/2! + x^3/3! + x^4/4! + 19*x^5/5! + 109*x^6/6! + 739*x^7/7! + 3889*x^8/8! + 35641*x^9/9! + 292681*x^10/10! + 3753721*x^11/11! + 37275121*x^12/12! + 500577499*x^13/13! + 5709311029*x^14/14! + 91718242219*x^15/15! + 1254902705569*x^16/16! + 22737318482161*x^17/17! + 350061261777361*x^18/18! + 6983681901945841*x^19/19! + 120872805166945441*x^20/20! +...
such that
(1) C(x) + S(x) = exp( Integral D(x)^3 dx ),
(2) C(x) + S(x) = 1 + Integral D(x)^3 * (C(x) + S(x)) dx,
(3) C(x)^2 - S(x)^2 = 1,
(4) D(x)^4 - S(x)^4 = 1,
where functions S(x), C(x), and D(x) are illustrated below.
RELATED SERIES.
S(x) = x + x^3/3! + 19*x^5/5! + 739*x^7/7! + 35641*x^9/9! + 3753721*x^11/11! + 500577499*x^13/13! + 91718242219*x^15/15! + 22737318482161*x^17/17! + 6983681901945841*x^19/19! + 2676021948941279779*x^21/21! + 1243547540389481251699*x^23/23! + 686920343453752746986281*x^25/25! + 446624144083900575607651561*x^27/27! +...
C(x) = 1 + x^2/2! + x^4/4! + 109*x^6/6! + 3889*x^8/8! + 292681*x^10/10! + 37275121*x^12/12! + 5709311029*x^14/14! + 1254902705569*x^16/16! + 350061261777361*x^18/18! + 120872805166945441*x^20/20! + 51564789352080559549*x^22/22! + 26284030671328082426449*x^24/24! + 15848108292907342195314841*x^26/26! + 11161807217694742818283238161*x^28/28! +...
D(x) = 1 + 6*x^4/4! + 120*x^6/6! + 4284*x^8/8! + 382560*x^10/10! + 40975176*x^12/12! + 6524350560*x^14/14! + 1420005102864*x^16/16! + 386400824613120*x^18/18! + 133774424157792096*x^20/20! + 56530740636066364800*x^22/22! + 28642309445854790698944*x^24/24! + 17209537237868777504801280*x^26/26! + 12062425479867549597010598016*x^28/28! +...
C(x)^2 = 1 + 2*x^2/2! + 8*x^4/4! + 248*x^6/6! + 13952*x^8/8! + 981152*x^10/10! + 128012288*x^12/12! + 21334590848*x^14/14! + 4721317609472*x^16/16! + 1369528258007552*x^18/18! + 487519312215277568*x^20/20! + 212815485425900238848*x^22/22! + 111362541450468672929792*x^24/24! + 68655437948261593572810752*x^26/26! +...
such that C(x)^2 = 1 + S(x)^2.
D(x)^2 = 1 + 12*x^4/4! + 240*x^6/6! + 11088*x^8/8! + 1067520*x^10/10! + 120702912*x^12/12! + 20731576320*x^14/14! + 4706356447488*x^16/16! + 1338363800125440*x^18/18! + 482064458680691712*x^20/20! + 210556245001175040000*x^22/22! + 110103167770187282239488*x^24/24! + 68059391373987458643394560*x^26/26! +...
D(x)^3 = 1 + 18*x^4/4! + 360*x^6/6! + 20412*x^8/8! + 2054880*x^10/10! + 246667608*x^12/12! + 45345998880*x^14/14! + 10711766694672*x^16/16! + 3182147454332160*x^18/18! + 1190153458696009248*x^20/20! + 536990828063228035200*x^22/22! + 289633988053086885277632*x^24/24! + 184083367623416380788963840*x^26/26! +...
D(x)^4 = 1 + 24*x^4/4! + 480*x^6/6! + 32256*x^8/8! + 3344640*x^10/10! + 426353664*x^12/12! + 83091939840*x^14/14! + 20370678153216*x^16/16! + 6310701707796480*x^18/18! + 2444823498480943104*x^20/20! + 1138286636773997568000*x^22/22! + 632578480424353976549376*x^24/24! + 413014933705057627523973120*x^26/26! +...
such that D(x)^4 = 1 + S(x)^4.
D(x)^2 + S(x)^2 = 1 + 2*x^2/2! + 20*x^4/4! + 488*x^6/6! + 25040*x^8/8! + 2048672*x^10/10! + 248715200*x^12/12! + 42066167168*x^14/14! + 9427674056960*x^16/16! + 2707892058132992*x^18/18! + 969583770895969280*x^20/20! + 423371730427075278848*x^22/22! + 221465709220655955169280*x^24/24! + 136714829322249052216205312*x^26/26! +...
sqrt(D(x)^2 + S(x)^2) = 1 + x^2/2! + 7*x^4/4! + 139*x^6/6! + 6913*x^8/8! + 508921*x^10/10! + 57888967*x^12/12! + 9313574419*x^14/14! + 1984690709953*x^16/16! + 547467006437041*x^18/18! + 188946742298214727*x^20/20! + 79783392959511537499*x^22/22! + 40498043815904027702593*x^24/24! + 24314800861291379306213161*x^26/26! +...
such that sqrt(D(x)^2 + S(x)^2) = exp( Integral S(x)*C(x)*D(x) dx ).
PROG
(PARI) {a(n) = my(S=x, C=1, D=1); for(i=0, n, S = intformal( C*D^3 + x*O(x^n)); C = 1 + intformal( S*D^3 ); D = 1 + intformal( C*S^3 )); n!*polcoeff(C+S, n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Cf. A280625 (S), A280626 (C), A280627 (D), A280629 (sqrt(D^2+S^2)).
Sequence in context: A306855 A243761 A184056 * A191566 A118607 A144246
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 06 2017
STATUS
approved