The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A280626 E.g.f. C(x) satisfies: C(x)^2 - S(x)^2 = 1 and D(x)^4 - S(x)^4 = 1, where functions S(x) and D(x) are described by A280625 and A280627, respectively. 5
 1, 1, 1, 109, 3889, 292681, 37275121, 5709311029, 1254902705569, 350061261777361, 120872805166945441, 51564789352080559549, 26284030671328082426449, 15848108292907342195314841, 11161807217694742818283238161, 9067075855589680072656446948869, 8422853639587133754025283126027329, 8870217999823146934380010426752373921, 10511235230699377130222779475407450044481, 13925615313807886230641992889497147251058189 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 LINKS Paul D. Hanna, Table of n, a(n) for n = 0..200 FORMULA E.g.f. C(x) = Sum_{n>=0} a(n)*x^(2*n)/(2*n)!, where related functions S = S(x), C = C(x), and D = D(x) possess the following properties. (1.a) C^2 - S^2 = 1. (1.b) D^4 - S^4 = 1. Integrals. (2.a) S = Integral C*D^3 dx. (2.b) C = 1 + Integral S*D^3 dx. (2.c) D = 1 + Integral C*S^3 dx. (2.d) C + S = 1 + Integral D^3 * (C + S) dx. (2.e) D^2 + S^2 = 1 + Integral 2*S*C*D * (D^2 + S^2) dx. (2.f) D - S = 1 - Integral C * (D^3 - S^3) dx. Exponential. (3.a) C + S = exp( Integral D^3 dx ). (3.b) D^2 + S^2 = exp( Integral 2*S*C*D dx ). (3.d) C = cosh( Integral D^3 dx ). (3.e) S = sinh( Integral D^3 dx ). (3.f) D^2 = cosh( Integral 2*S*C*D dx ). (3.g) S^2 = sinh( Integral 2*S*C*D dx ). (3.h) sinh( Integral D^3 dx )^2 = sinh( Integral 2*S*C*D dx ). Derivatives. (4.a) S' = C*D^3. (4.b) C' = S*D^3. (4.c) D' = C*S^3. (4.d) S'*D - D'*S = C. (4.e) S'*C - C'*S = D^3. (4.f) (C' + S')/(C + S) = D^3. (4.g) (D^2 + S^2)'/(D^2 + S^2) = 2*S*C*D. (4.h) (D' - S')/(D - S) = -C * (D^2 + D*S + S^2). EXAMPLE E.g.f.: C(x) = 1 + x^2/2! + x^4/4! + 109*x^6/6! + 3889*x^8/8! + 292681*x^10/10! + 37275121*x^12/12! + 5709311029*x^14/14! + 1254902705569*x^16/16! + 350061261777361*x^18/18! + 120872805166945441*x^20/20! + 51564789352080559549*x^22/22! + 26284030671328082426449*x^24/24! + 15848108292907342195314841*x^26/26! + 11161807217694742818283238161*x^28/28! +... such that (1) C(x)^2 - S(x)^2 = 1, (2) D(x)^4 - S(x)^4 = 1, where functions S(x) and D(x) are illustrated below. RELATED SERIES. S(x) = x + x^3/3! + 19*x^5/5! + 739*x^7/7! + 35641*x^9/9! + 3753721*x^11/11! + 500577499*x^13/13! + 91718242219*x^15/15! + 22737318482161*x^17/17! + 6983681901945841*x^19/19! + 2676021948941279779*x^21/21! + 1243547540389481251699*x^23/23! + 686920343453752746986281*x^25/25! + 446624144083900575607651561*x^27/27! +... D(x) = 1 + 6*x^4/4! + 120*x^6/6! + 4284*x^8/8! + 382560*x^10/10! + 40975176*x^12/12! + 6524350560*x^14/14! + 1420005102864*x^16/16! + 386400824613120*x^18/18! + 133774424157792096*x^20/20! + 56530740636066364800*x^22/22! + 28642309445854790698944*x^24/24! + 17209537237868777504801280*x^26/26! + 12062425479867549597010598016*x^28/28! +... C(x) + S(x) = 1 + x + x^2/2! + x^3/3! + x^4/4! + 19*x^5/5! + 109*x^6/6! + 739*x^7/7! + 3889*x^8/8! + 35641*x^9/9! + 292681*x^10/10! + 3753721*x^11/11! + 37275121*x^12/12! + 500577499*x^13/13! + 5709311029*x^14/14! + 91718242219*x^15/15! + 1254902705569*x^16/16! + 22737318482161*x^17/17! + 350061261777361*x^18/18! + 6983681901945841*x^19/19! + 120872805166945441*x^20/20! +... such that C(x) + S(x) = exp( Integral D(x)^3 dx ). C(x)^2 = 1 + 2*x^2/2! + 8*x^4/4! + 248*x^6/6! + 13952*x^8/8! + 981152*x^10/10! + 128012288*x^12/12! + 21334590848*x^14/14! + 4721317609472*x^16/16! + 1369528258007552*x^18/18! + 487519312215277568*x^20/20! + 212815485425900238848*x^22/22! + 111362541450468672929792*x^24/24! + 68655437948261593572810752*x^26/26! +... such that C(x)^2 = 1 + S(x)^2. D(x)^2 = 1 + 12*x^4/4! + 240*x^6/6! + 11088*x^8/8! + 1067520*x^10/10! + 120702912*x^12/12! + 20731576320*x^14/14! + 4706356447488*x^16/16! + 1338363800125440*x^18/18! + 482064458680691712*x^20/20! + 210556245001175040000*x^22/22! + 110103167770187282239488*x^24/24! + 68059391373987458643394560*x^26/26! +... D(x)^3 = 1 + 18*x^4/4! + 360*x^6/6! + 20412*x^8/8! + 2054880*x^10/10! + 246667608*x^12/12! + 45345998880*x^14/14! + 10711766694672*x^16/16! + 3182147454332160*x^18/18! + 1190153458696009248*x^20/20! + 536990828063228035200*x^22/22! + 289633988053086885277632*x^24/24! + 184083367623416380788963840*x^26/26! +... D(x)^4 = 1 + 24*x^4/4! + 480*x^6/6! + 32256*x^8/8! + 3344640*x^10/10! + 426353664*x^12/12! + 83091939840*x^14/14! + 20370678153216*x^16/16! + 6310701707796480*x^18/18! + 2444823498480943104*x^20/20! + 1138286636773997568000*x^22/22! + 632578480424353976549376*x^24/24! + 413014933705057627523973120*x^26/26! +... such that D(x)^4 = 1 + S(x)^4. D(x)^2 + S(x)^2 = 1 + 2*x^2/2! + 20*x^4/4! + 488*x^6/6! + 25040*x^8/8! + 2048672*x^10/10! + 248715200*x^12/12! + 42066167168*x^14/14! + 9427674056960*x^16/16! + 2707892058132992*x^18/18! + 969583770895969280*x^20/20! + 423371730427075278848*x^22/22! + 221465709220655955169280*x^24/24! + 136714829322249052216205312*x^26/26! +... sqrt(D(x)^2 + S(x)^2) = 1 + x^2/2! + 7*x^4/4! + 139*x^6/6! + 6913*x^8/8! + 508921*x^10/10! + 57888967*x^12/12! + 9313574419*x^14/14! + 1984690709953*x^16/16! + 547467006437041*x^18/18! + 188946742298214727*x^20/20! + 79783392959511537499*x^22/22! + 40498043815904027702593*x^24/24! + 24314800861291379306213161*x^26/26! +... such that sqrt(D(x)^2 + S(x)^2) = exp( Integral S(x)*C(x)*D(x) dx ). PROG (PARI) {a(n) = my(S=x, C=1, D=1); for(i=0, 2*n, S = intformal( C*D^3 + x*O(x^(2*n))); C = 1 + intformal( S*D^3 ); D = 1 + intformal( C*S^3 )); (2*n)!*polcoeff(C, 2*n)} for(n=0, 20, print1(a(n), ", ")) CROSSREFS Cf. A280625 (S), A280627 (D), A280628 (C+S), A280629 (sqrt(D^2+S^2)). Sequence in context: A232416 A333116 A278278 * A227949 A144930 A190827 Adjacent sequences:  A280623 A280624 A280625 * A280627 A280628 A280629 KEYWORD nonn AUTHOR Paul D. Hanna, Jan 06 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 4 13:06 EST 2021. Contains 349526 sequences. (Running on oeis4.)