login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A280626
E.g.f. C(x) satisfies: C(x)^2 - S(x)^2 = 1 and D(x)^4 - S(x)^4 = 1, where functions S(x) and D(x) are described by A280625 and A280627, respectively.
5
1, 1, 1, 109, 3889, 292681, 37275121, 5709311029, 1254902705569, 350061261777361, 120872805166945441, 51564789352080559549, 26284030671328082426449, 15848108292907342195314841, 11161807217694742818283238161, 9067075855589680072656446948869, 8422853639587133754025283126027329, 8870217999823146934380010426752373921, 10511235230699377130222779475407450044481, 13925615313807886230641992889497147251058189
OFFSET
0,4
LINKS
FORMULA
E.g.f. C(x) = Sum_{n>=0} a(n)*x^(2*n)/(2*n)!, where related functions S = S(x), C = C(x), and D = D(x) possess the following properties.
(1.a) C^2 - S^2 = 1.
(1.b) D^4 - S^4 = 1.
Integrals.
(2.a) S = Integral C*D^3 dx.
(2.b) C = 1 + Integral S*D^3 dx.
(2.c) D = 1 + Integral C*S^3 dx.
(2.d) C + S = 1 + Integral D^3 * (C + S) dx.
(2.e) D^2 + S^2 = 1 + Integral 2*S*C*D * (D^2 + S^2) dx.
(2.f) D - S = 1 - Integral C * (D^3 - S^3) dx.
Exponential.
(3.a) C + S = exp( Integral D^3 dx ).
(3.b) D^2 + S^2 = exp( Integral 2*S*C*D dx ).
(3.d) C = cosh( Integral D^3 dx ).
(3.e) S = sinh( Integral D^3 dx ).
(3.f) D^2 = cosh( Integral 2*S*C*D dx ).
(3.g) S^2 = sinh( Integral 2*S*C*D dx ).
(3.h) sinh( Integral D^3 dx )^2 = sinh( Integral 2*S*C*D dx ).
Derivatives.
(4.a) S' = C*D^3.
(4.b) C' = S*D^3.
(4.c) D' = C*S^3.
(4.d) S'*D - D'*S = C.
(4.e) S'*C - C'*S = D^3.
(4.f) (C' + S')/(C + S) = D^3.
(4.g) (D^2 + S^2)'/(D^2 + S^2) = 2*S*C*D.
(4.h) (D' - S')/(D - S) = -C * (D^2 + D*S + S^2).
EXAMPLE
E.g.f.: C(x) = 1 + x^2/2! + x^4/4! + 109*x^6/6! + 3889*x^8/8! + 292681*x^10/10! + 37275121*x^12/12! + 5709311029*x^14/14! + 1254902705569*x^16/16! + 350061261777361*x^18/18! + 120872805166945441*x^20/20! + 51564789352080559549*x^22/22! + 26284030671328082426449*x^24/24! + 15848108292907342195314841*x^26/26! + 11161807217694742818283238161*x^28/28! +...
such that
(1) C(x)^2 - S(x)^2 = 1,
(2) D(x)^4 - S(x)^4 = 1,
where functions S(x) and D(x) are illustrated below.
RELATED SERIES.
S(x) = x + x^3/3! + 19*x^5/5! + 739*x^7/7! + 35641*x^9/9! + 3753721*x^11/11! + 500577499*x^13/13! + 91718242219*x^15/15! + 22737318482161*x^17/17! + 6983681901945841*x^19/19! + 2676021948941279779*x^21/21! + 1243547540389481251699*x^23/23! + 686920343453752746986281*x^25/25! + 446624144083900575607651561*x^27/27! +...
D(x) = 1 + 6*x^4/4! + 120*x^6/6! + 4284*x^8/8! + 382560*x^10/10! + 40975176*x^12/12! + 6524350560*x^14/14! + 1420005102864*x^16/16! + 386400824613120*x^18/18! + 133774424157792096*x^20/20! + 56530740636066364800*x^22/22! + 28642309445854790698944*x^24/24! + 17209537237868777504801280*x^26/26! + 12062425479867549597010598016*x^28/28! +...
C(x) + S(x) = 1 + x + x^2/2! + x^3/3! + x^4/4! + 19*x^5/5! + 109*x^6/6! + 739*x^7/7! + 3889*x^8/8! + 35641*x^9/9! + 292681*x^10/10! + 3753721*x^11/11! + 37275121*x^12/12! + 500577499*x^13/13! + 5709311029*x^14/14! + 91718242219*x^15/15! + 1254902705569*x^16/16! + 22737318482161*x^17/17! + 350061261777361*x^18/18! + 6983681901945841*x^19/19! + 120872805166945441*x^20/20! +...
such that C(x) + S(x) = exp( Integral D(x)^3 dx ).
C(x)^2 = 1 + 2*x^2/2! + 8*x^4/4! + 248*x^6/6! + 13952*x^8/8! + 981152*x^10/10! + 128012288*x^12/12! + 21334590848*x^14/14! + 4721317609472*x^16/16! + 1369528258007552*x^18/18! + 487519312215277568*x^20/20! + 212815485425900238848*x^22/22! + 111362541450468672929792*x^24/24! + 68655437948261593572810752*x^26/26! +...
such that C(x)^2 = 1 + S(x)^2.
D(x)^2 = 1 + 12*x^4/4! + 240*x^6/6! + 11088*x^8/8! + 1067520*x^10/10! + 120702912*x^12/12! + 20731576320*x^14/14! + 4706356447488*x^16/16! + 1338363800125440*x^18/18! + 482064458680691712*x^20/20! + 210556245001175040000*x^22/22! + 110103167770187282239488*x^24/24! + 68059391373987458643394560*x^26/26! +...
D(x)^3 = 1 + 18*x^4/4! + 360*x^6/6! + 20412*x^8/8! + 2054880*x^10/10! + 246667608*x^12/12! + 45345998880*x^14/14! + 10711766694672*x^16/16! + 3182147454332160*x^18/18! + 1190153458696009248*x^20/20! + 536990828063228035200*x^22/22! + 289633988053086885277632*x^24/24! + 184083367623416380788963840*x^26/26! +...
D(x)^4 = 1 + 24*x^4/4! + 480*x^6/6! + 32256*x^8/8! + 3344640*x^10/10! + 426353664*x^12/12! + 83091939840*x^14/14! + 20370678153216*x^16/16! + 6310701707796480*x^18/18! + 2444823498480943104*x^20/20! + 1138286636773997568000*x^22/22! + 632578480424353976549376*x^24/24! + 413014933705057627523973120*x^26/26! +...
such that D(x)^4 = 1 + S(x)^4.
D(x)^2 + S(x)^2 = 1 + 2*x^2/2! + 20*x^4/4! + 488*x^6/6! + 25040*x^8/8! + 2048672*x^10/10! + 248715200*x^12/12! + 42066167168*x^14/14! + 9427674056960*x^16/16! + 2707892058132992*x^18/18! + 969583770895969280*x^20/20! + 423371730427075278848*x^22/22! + 221465709220655955169280*x^24/24! + 136714829322249052216205312*x^26/26! +...
sqrt(D(x)^2 + S(x)^2) = 1 + x^2/2! + 7*x^4/4! + 139*x^6/6! + 6913*x^8/8! + 508921*x^10/10! + 57888967*x^12/12! + 9313574419*x^14/14! + 1984690709953*x^16/16! + 547467006437041*x^18/18! + 188946742298214727*x^20/20! + 79783392959511537499*x^22/22! + 40498043815904027702593*x^24/24! + 24314800861291379306213161*x^26/26! +...
such that sqrt(D(x)^2 + S(x)^2) = exp( Integral S(x)*C(x)*D(x) dx ).
PROG
(PARI) {a(n) = my(S=x, C=1, D=1); for(i=0, 2*n, S = intformal( C*D^3 + x*O(x^(2*n))); C = 1 + intformal( S*D^3 ); D = 1 + intformal( C*S^3 )); (2*n)!*polcoeff(C, 2*n)}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
Cf. A280625 (S), A280627 (D), A280628 (C+S), A280629 (sqrt(D^2+S^2)).
Sequence in context: A232416 A333116 A278278 * A357231 A227949 A144930
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 06 2017
STATUS
approved