The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A280624 E.g.f. 1/(D(x) - S(x)), where C(x)^2 - S(x)^2 = 1 and D(x)^3 - S(x)^3 = 1, and functions S(x), C(x), and D(x) are described by A280620, A280621, and A280622, respectively. 5
 1, 1, 2, 5, 20, 81, 452, 2765, 19460, 156121, 1368052, 13327125, 141326500, 1616350561, 20040895252, 264759181085, 3740415315140, 56164918735401, 891038080096052, 14957788277468645, 263869908657105380, 4889789934063374641, 94981373343123194452, 1926808692484086173805, 40825113073569433353220, 900600514588651088444281 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Paul D. Hanna, Table of n, a(n) for n = 0..200 FORMULA E.g.f. 1/(D(x) - S(x)), where related functions S = S(x), C = C(x), and D = D(x) possess the following properties. (1.a) C^2 - S^2 = 1. (1.b) D^3 - S^3 = 1. (1.c) 1/(D - S) = D^2 + D*S + S^2. Integrals. (2.a) S = Integral C*D^2 dx. (2.b) C = 1 + Integral S*D^2 dx. (2.c) D = 1 + Integral C*S^2 dx. (2.d) C + S = 1 + Integral (C + S) * D^2 dx. (2.e) D - S = 1 - Integral (D^2 - S^2) * C dx. Exponential. (3.a) C + S = exp( Integral D^2 dx ). (3.b) D - S = exp( Integral -(D + S) * C dx. (3.c) C = cosh( Integral D^2 dx ). (3.d) S = sinh( Integral D^2 dx ). Derivatives. (4.a) S' = C*D^2. (4.b) C' = S*D^2. (4.c) D' = C*S^2. (4.d) (C' + S')/(C + S) = D^2. (4.e) (D' - S')/(D - S) = -(D + S) * C. EXAMPLE E.g.f.: 1/(D(x) - S(x)) = 1 + x + 2*x^2/2! + 5*x^3/3! + 20*x^4/4! + 81*x^5/5! + 452*x^6/6! + 2765*x^7/7! + 19460*x^8/8! + 156121*x^9/9! + 1368052*x^10/10! + 13327125*x^11/11! + 141326500*x^12/12! + 1616350561*x^13/13! + 20040895252*x^14/14! + 264759181085*x^15/15! + 3740415315140*x^16/16! + 56164918735401*x^17/17! + 891038080096052*x^18/18! + 14957788277468645*x^19/19! + 263869908657105380*x^20/20! + 4889789934063374641*x^21/21! +... such that (1) 1/(D(x) - S(x)) = exp( Integral (D(x) + S(x)) * C(x) dx, (2) 1/(D(x) - S(x)) = 1/(1 - Integral (D(x)^2 - S(x)^2) * C(x) dx), (3) 1/(D(x) - S(x)) = D(x)^2 + D(x)*S(x) + S(x)^2, where functions S(x), C(x), and D(x) are illustrated below. RELATED SERIES. S(x) = x + x^3/3! + 4*x^4/4! + x^5/5! + 100*x^6/6! + 161*x^7/7! + 1764*x^8/8! + 22001*x^9/9! + 49700*x^10/10! + 1649921*x^11/11! + 10057124*x^12/12! + 105372001*x^13/13! + 2044251300*x^14/14! + 12879413281*x^15/15! + 315936586084*x^16/16! + 3892292034001*x^17/17! + 49987743460900*x^18/18! +... C(x) = 1 + x^2/2! + x^4/4! + 20*x^5/5! + x^6/6! + 420*x^7/7! + 1841*x^8/8! + 7140*x^9/9! + 190001*x^10/10! + 555940*x^11/11! + 12774881*x^12/12! + 141201060*x^13/13! + 946212001*x^14/14! + 25228809060*x^15/15! + 202847031121*x^16/16! + 3740829095780*x^17/17! + 66881800434001*x^18/18! +... D(x) = 1 + 2*x^3/3! + 20*x^5/5! + 40*x^6/6! + 182*x^7/7! + 3360*x^8/8! + 5320*x^9/9! + 165480*x^10/10! + 1193962*x^11/11! + 7681520*x^12/12! + 182657020*x^13/13! + 1028347320*x^14/14! + 21430373342*x^15/15! + 296385660480*x^16/16! + 2926954283120*x^17/17! + 74104327031560*x^18/18! +... S(x)^2 = 2*x^2/2! + 8*x^4/4! + 40*x^5/5! + 32*x^6/6! + 1680*x^7/7! + 3808*x^8/8! + 49560*x^9/9! + 646912*x^10/10! + 2192960*x^11/11! + 65759008*x^12/12! + 475555080*x^13/13! + 5786067392*x^14/14! + 114473289840*x^15/15! + 891694992608*x^16/16! + 21934824868600*x^17/17! + 298444830841472*x^18/18! +... such that C(x)^2 = 1 + S(x)^2. D(x)^2 = 1 + 4*x^3/3! + 40*x^5/5! + 160*x^6/6! + 364*x^7/7! + 11200*x^8/8! + 24080*x^9/9! + 519120*x^10/10! + 5344724*x^11/11! + 27288800*x^12/12! + 752580920*x^13/13! + 5142016880*x^14/14! + 86718961084*x^15/15! + 1483995676800*x^16/16! + 13774998062560*x^17/17! + 356032443815440*x^18/18! +... such that D(x)^2 = S'(x)/C(x) = C'(x)/S(x). S(x)^3 = 6*x^3/3! + 60*x^5/5! + 360*x^6/6! + 546*x^7/7! + 23520*x^8/8! + 69720*x^9/9! + 1060920*x^10/10! + 14669886*x^11/11! + 67692240*x^12/12! + 1957699380*x^13/13! + 16377040680*x^14/14! + 228086752026*x^15/15! + 4642872212160*x^16/16! + 43205148425040*x^17/17! + 1084693228559640*x^18/18! +... such that D(x)^3 = 1 + S(x)^3. C(x) + S(x) = 1 + x + x^2/2! + x^3/3! + 5*x^4/4! + 21*x^5/5! + 101*x^6/6! + 581*x^7/7! + 3605*x^8/8! + 29141*x^9/9! + 239701*x^10/10! + 2205861*x^11/11! + 22832005*x^12/12! + 246573061*x^13/13! + 2990463301*x^14/14! + 38108222341*x^15/15! + 518783617205*x^16/16! + 7633121129781*x^17/17! + 116869543894901*x^18/18! + 1918479435194021*x^19/19! + 33025793008567205*x^20/20! + 595507639576003301*x^21/21! +... such that C(x) + S(x) = exp( Integral D(x)^2 dx ). (D(x) + S(x)) * C(x) = 1 + x + x^2/2! + 6*x^3/3! + 5*x^4/4! + 76*x^5/5! + 321*x^6/6! + 1316*x^7/7! + 17885*x^8/8! + 76356*x^9/9! + 994441*x^10/10! + 9874676*x^11/11! + 74828565*x^12/12! + 1303240036*x^13/13! + 11870994961*x^14/14! + 176287450836*x^15/15! + 2744914364045*x^16/16! + 32625657194116*x^17/17! + 656531629753881*x^18/18! +... such that (D(x) + S(x)) * C(x) = -(D'(x) - S'(x))/(D(x) - S(x)). PROG (PARI) {a(n) = my(S=x, C=1, D=1); for(i=0, n, S = intformal( C*D^2 + x*O(x^n)); C = 1 + intformal( S*D^2 ); D = 1 + intformal( C*S^2 )); n!*polcoeff(1/(D-S), n)} for(n=0, 30, print1(a(n), ", ")) CROSSREFS Cf. A280620 (S), A280621 (C), A280622 (D), A280623 (C+S). Sequence in context: A027041 A186767 A009737 * A008983 A286284 A286285 Adjacent sequences:  A280621 A280622 A280623 * A280625 A280626 A280627 KEYWORD nonn AUTHOR Paul D. Hanna, Jan 06 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 2 18:11 EST 2021. Contains 349445 sequences. (Running on oeis4.)