login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A280624 E.g.f. 1/(D(x) - S(x)), where C(x)^2 - S(x)^2 = 1 and D(x)^3 - S(x)^3 = 1, and functions S(x), C(x), and D(x) are described by A280620, A280621, and A280622, respectively. 5
1, 1, 2, 5, 20, 81, 452, 2765, 19460, 156121, 1368052, 13327125, 141326500, 1616350561, 20040895252, 264759181085, 3740415315140, 56164918735401, 891038080096052, 14957788277468645, 263869908657105380, 4889789934063374641, 94981373343123194452, 1926808692484086173805, 40825113073569433353220, 900600514588651088444281 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Paul D. Hanna, Table of n, a(n) for n = 0..200

FORMULA

E.g.f. 1/(D(x) - S(x)), where related functions S = S(x), C = C(x), and D = D(x) possess the following properties.

(1.a) C^2 - S^2 = 1.

(1.b) D^3 - S^3 = 1.

(1.c) 1/(D - S) = D^2 + D*S + S^2.

Integrals.

(2.a) S = Integral C*D^2 dx.

(2.b) C = 1 + Integral S*D^2 dx.

(2.c) D = 1 + Integral C*S^2 dx.

(2.d) C + S = 1 + Integral (C + S) * D^2 dx.

(2.e) D - S = 1 - Integral (D^2 - S^2) * C dx.

Exponential.

(3.a) C + S = exp( Integral D^2 dx ).

(3.b) D - S = exp( Integral -(D + S) * C dx.

(3.c) C = cosh( Integral D^2 dx ).

(3.d) S = sinh( Integral D^2 dx ).

Derivatives.

(4.a) S' = C*D^2.

(4.b) C' = S*D^2.

(4.c) D' = C*S^2.

(4.d) (C' + S')/(C + S) = D^2.

(4.e) (D' - S')/(D - S) = -(D + S) * C.

EXAMPLE

E.g.f.: 1/(D(x) - S(x)) = 1 + x + 2*x^2/2! + 5*x^3/3! + 20*x^4/4! + 81*x^5/5! + 452*x^6/6! + 2765*x^7/7! + 19460*x^8/8! + 156121*x^9/9! + 1368052*x^10/10! + 13327125*x^11/11! + 141326500*x^12/12! + 1616350561*x^13/13! + 20040895252*x^14/14! + 264759181085*x^15/15! + 3740415315140*x^16/16! + 56164918735401*x^17/17! + 891038080096052*x^18/18! + 14957788277468645*x^19/19! + 263869908657105380*x^20/20! + 4889789934063374641*x^21/21! +...

such that

(1) 1/(D(x) - S(x)) = exp( Integral (D(x) + S(x)) * C(x) dx,

(2) 1/(D(x) - S(x)) = 1/(1 - Integral (D(x)^2 - S(x)^2) * C(x) dx),

(3) 1/(D(x) - S(x)) = D(x)^2 + D(x)*S(x) + S(x)^2,

where functions S(x), C(x), and D(x) are illustrated below.

RELATED SERIES.

S(x) = x + x^3/3! + 4*x^4/4! + x^5/5! + 100*x^6/6! + 161*x^7/7! + 1764*x^8/8! + 22001*x^9/9! + 49700*x^10/10! + 1649921*x^11/11! + 10057124*x^12/12! + 105372001*x^13/13! + 2044251300*x^14/14! + 12879413281*x^15/15! + 315936586084*x^16/16! + 3892292034001*x^17/17! + 49987743460900*x^18/18! +...

C(x) = 1 + x^2/2! + x^4/4! + 20*x^5/5! + x^6/6! + 420*x^7/7! + 1841*x^8/8! + 7140*x^9/9! + 190001*x^10/10! + 555940*x^11/11! + 12774881*x^12/12! + 141201060*x^13/13! + 946212001*x^14/14! + 25228809060*x^15/15! + 202847031121*x^16/16! + 3740829095780*x^17/17! + 66881800434001*x^18/18! +...

D(x) = 1 + 2*x^3/3! + 20*x^5/5! + 40*x^6/6! + 182*x^7/7! + 3360*x^8/8! + 5320*x^9/9! + 165480*x^10/10! + 1193962*x^11/11! + 7681520*x^12/12! + 182657020*x^13/13! + 1028347320*x^14/14! + 21430373342*x^15/15! + 296385660480*x^16/16! + 2926954283120*x^17/17! + 74104327031560*x^18/18! +...

S(x)^2 = 2*x^2/2! + 8*x^4/4! + 40*x^5/5! + 32*x^6/6! + 1680*x^7/7! + 3808*x^8/8! + 49560*x^9/9! + 646912*x^10/10! + 2192960*x^11/11! + 65759008*x^12/12! + 475555080*x^13/13! + 5786067392*x^14/14! + 114473289840*x^15/15! + 891694992608*x^16/16! + 21934824868600*x^17/17! + 298444830841472*x^18/18! +...

such that C(x)^2 = 1 + S(x)^2.

D(x)^2 = 1 + 4*x^3/3! + 40*x^5/5! + 160*x^6/6! + 364*x^7/7! + 11200*x^8/8! + 24080*x^9/9! + 519120*x^10/10! + 5344724*x^11/11! + 27288800*x^12/12! + 752580920*x^13/13! + 5142016880*x^14/14! + 86718961084*x^15/15! + 1483995676800*x^16/16! + 13774998062560*x^17/17! + 356032443815440*x^18/18! +...

such that D(x)^2 = S'(x)/C(x) = C'(x)/S(x).

S(x)^3 = 6*x^3/3! + 60*x^5/5! + 360*x^6/6! + 546*x^7/7! + 23520*x^8/8! + 69720*x^9/9! + 1060920*x^10/10! + 14669886*x^11/11! + 67692240*x^12/12! + 1957699380*x^13/13! + 16377040680*x^14/14! + 228086752026*x^15/15! + 4642872212160*x^16/16! + 43205148425040*x^17/17! + 1084693228559640*x^18/18! +...

such that D(x)^3 = 1 + S(x)^3.

C(x) + S(x) = 1 + x + x^2/2! + x^3/3! + 5*x^4/4! + 21*x^5/5! + 101*x^6/6! + 581*x^7/7! + 3605*x^8/8! + 29141*x^9/9! + 239701*x^10/10! + 2205861*x^11/11! + 22832005*x^12/12! + 246573061*x^13/13! + 2990463301*x^14/14! + 38108222341*x^15/15! + 518783617205*x^16/16! + 7633121129781*x^17/17! + 116869543894901*x^18/18! + 1918479435194021*x^19/19! + 33025793008567205*x^20/20! + 595507639576003301*x^21/21! +...

such that C(x) + S(x) = exp( Integral D(x)^2 dx ).

(D(x) + S(x)) * C(x) = 1 + x + x^2/2! + 6*x^3/3! + 5*x^4/4! + 76*x^5/5! + 321*x^6/6! + 1316*x^7/7! + 17885*x^8/8! + 76356*x^9/9! + 994441*x^10/10! + 9874676*x^11/11! + 74828565*x^12/12! + 1303240036*x^13/13! + 11870994961*x^14/14! + 176287450836*x^15/15! + 2744914364045*x^16/16! + 32625657194116*x^17/17! + 656531629753881*x^18/18! +...

such that (D(x) + S(x)) * C(x) = -(D'(x) - S'(x))/(D(x) - S(x)).

PROG

(PARI) {a(n) = my(S=x, C=1, D=1); for(i=0, n, S = intformal( C*D^2 + x*O(x^n)); C = 1 + intformal( S*D^2 ); D = 1 + intformal( C*S^2 )); n!*polcoeff(1/(D-S), n)}

for(n=0, 30, print1(a(n), ", "))

CROSSREFS

Cf. A280620 (S), A280621 (C), A280622 (D), A280623 (C+S).

Sequence in context: A027041 A186767 A009737 * A008983 A286284 A286285

Adjacent sequences:  A280621 A280622 A280623 * A280625 A280626 A280627

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Jan 06 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 2 18:11 EST 2021. Contains 349445 sequences. (Running on oeis4.)