login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A280620 E.g.f. S(x) satisfies: C(x)^2 - S(x)^2 = 1 and D(x)^3 - S(x)^3 = 1, where functions C(x) and D(x) are described by A280621 and A280622, respectively. 4
1, 0, 1, 4, 1, 100, 161, 1764, 22001, 49700, 1649921, 10057124, 105372001, 2044251300, 12879413281, 315936586084, 3892292034001, 49987743460900, 1185027040858241, 13878406361764644, 321536491629592001, 6033371812540110500, 100320731761080176801, 2657253524511363224804, 47170890863193411630001, 1155602674484930034008100, 28284869824153625118984961 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,4

LINKS

Table of n, a(n) for n=1..27.

FORMULA

E.g.f. S(x) = Series_Reversion( Integral 1/( (1+x^2)^(1/2) * (1+x^3)^(2/3) ) dx ).

E.g.f. S(x), where related functions S = S(x), C = C(x), and D = D(x) possess the following properties.

(1.a) C^2 - S^2 = 1.

(1.b) D^3 - S^3 = 1.

Integrals.

(2.a) S = Integral C*D^2 dx.

(2.b) C = 1 + Integral S*D^2 dx.

(2.c) D = 1 + Integral C*S^2 dx.

(2.d) C + S = 1 + Integral (C + S) * D^2 dx.

(2.e) D - S = 1 - Integral (D^2 - S^2) * C dx.

Exponential.

(3.a) C + S = exp( Integral D^2 dx ).

(3.b) D - S = exp( Integral -(D + S) * C dx.

(3.c) C = cosh( Integral D^2 dx ).

(3.d) S = sinh( Integral D^2 dx ).

Derivatives.

(4.a) S' = C*D^2.

(4.b) C' = S*D^2.

(4.c) D' = C*S^2.

(4.d) (C' + S')/(C + S) = D^2.

(4.e) (D' - S')/(D - S) = -(D + S) * C.

EXAMPLE

E.g.f.: S(x) = x + x^3/3! + 4*x^4/4! + x^5/5! + 100*x^6/6! + 161*x^7/7! + 1764*x^8/8! + 22001*x^9/9! + 49700*x^10/10! + 1649921*x^11/11! + 10057124*x^12/12! + 105372001*x^13/13! + 2044251300*x^14/14! + 12879413281*x^15/15! + 315936586084*x^16/16! + 3892292034001*x^17/17! + 49987743460900*x^18/18! +...

such that

(1) C(x)^2 - S(x)^2 = 1,

(2) D(x)^3 - S(x)^3 = 1,

where functions C(x) and D(x) are illustrated below.

RELATED SERIES.

C(x) = 1 + x^2/2! + x^4/4! + 20*x^5/5! + x^6/6! + 420*x^7/7! + 1841*x^8/8! + 7140*x^9/9! + 190001*x^10/10! + 555940*x^11/11! + 12774881*x^12/12! + 141201060*x^13/13! + 946212001*x^14/14! + 25228809060*x^15/15! + 202847031121*x^16/16! + 3740829095780*x^17/17! + 66881800434001*x^18/18! +...

D(x) = 1 + 2*x^3/3! + 20*x^5/5! + 40*x^6/6! + 182*x^7/7! + 3360*x^8/8! + 5320*x^9/9! + 165480*x^10/10! + 1193962*x^11/11! + 7681520*x^12/12! + 182657020*x^13/13! + 1028347320*x^14/14! + 21430373342*x^15/15! + 296385660480*x^16/16! + 2926954283120*x^17/17! + 74104327031560*x^18/18! +...

S(x)^2 = 2*x^2/2! + 8*x^4/4! + 40*x^5/5! + 32*x^6/6! + 1680*x^7/7! + 3808*x^8/8! + 49560*x^9/9! + 646912*x^10/10! + 2192960*x^11/11! + 65759008*x^12/12! + 475555080*x^13/13! + 5786067392*x^14/14! + 114473289840*x^15/15! + 891694992608*x^16/16! + 21934824868600*x^17/17! + 298444830841472*x^18/18! +...

such that C(x)^2 = 1 + S(x)^2.

D(x)^2 = 1 + 4*x^3/3! + 40*x^5/5! + 160*x^6/6! + 364*x^7/7! + 11200*x^8/8! + 24080*x^9/9! + 519120*x^10/10! + 5344724*x^11/11! + 27288800*x^12/12! + 752580920*x^13/13! + 5142016880*x^14/14! + 86718961084*x^15/15! + 1483995676800*x^16/16! + 13774998062560*x^17/17! + 356032443815440*x^18/18! +...

such that D(x)^2 = S'(x)/C(x) = C'(x)/S(x).

S(x)^3 = 6*x^3/3! + 60*x^5/5! + 360*x^6/6! + 546*x^7/7! + 23520*x^8/8! + 69720*x^9/9! + 1060920*x^10/10! + 14669886*x^11/11! + 67692240*x^12/12! + 1957699380*x^13/13! + 16377040680*x^14/14! + 228086752026*x^15/15! + 4642872212160*x^16/16! + 43205148425040*x^17/17! + 1084693228559640*x^18/18! +...

such that D(x)^3 = 1 + S(x)^3.

C(x) + S(x) = 1 + x + x^2/2! + x^3/3! + 5*x^4/4! + 21*x^5/5! + 101*x^6/6! + 581*x^7/7! + 3605*x^8/8! + 29141*x^9/9! + 239701*x^10/10! + 2205861*x^11/11! + 22832005*x^12/12! + 246573061*x^13/13! + 2990463301*x^14/14! + 38108222341*x^15/15! + 518783617205*x^16/16! + 7633121129781*x^17/17! + 116869543894901*x^18/18! + 1918479435194021*x^19/19! + 33025793008567205*x^20/20! + 595507639576003301*x^21/21! +...

such that C(x) + S(x) = exp( Integral D^2 dx ).

1/(D(x) - S(x)) = 1 + x + 2*x^2/2! + 5*x^3/3! + 20*x^4/4! + 81*x^5/5! + 452*x^6/6! + 2765*x^7/7! + 19460*x^8/8! + 156121*x^9/9! + 1368052*x^10/10! + 13327125*x^11/11! + 141326500*x^12/12! + 1616350561*x^13/13! + 20040895252*x^14/14! + 264759181085*x^15/15! + 3740415315140*x^16/16! + 56164918735401*x^17/17! + 891038080096052*x^18/18! + 14957788277468645*x^19/19! + 263869908657105380*x^20/20! + 4889789934063374641*x^21/21! +...

such that 1/(D(x) - S(x)) = exp( Integral (D(x) + S(x)) * C(x) dx.

PROG

(PARI) {a(n) = my(S=x, C=1, D=1); for(i=1, n, S = intformal( C*D^2 + x*O(x^n)); C = 1 + intformal( S*D^2 ); D = 1 + intformal( C*S^2 )); n!*polcoeff(S, n)}

for(n=1, 30, print1(a(n), ", "))

(PARI) /* Explicit formula for the e.g.f. S(x) */

{a(n) = n!*polcoeff( serreverse( intformal( 1/((1+x^2 +x*O(x^n))^(1/2)*(1+x^3 +x*O(x^n))^(2/3)) )), n)}

for(n=1, 20, print1(a(n), ", "))

CROSSREFS

Cf. A280621 (C), A280622 (D), A280623 (C+S), A280624 (1/(C-S)).

Sequence in context: A255192 A299582 A211341 * A262405 A152841 A125083

Adjacent sequences:  A280617 A280618 A280619 * A280621 A280622 A280623

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Jan 06 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 5 22:34 EST 2021. Contains 349558 sequences. (Running on oeis4.)