The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A125083 a(n) = n^5-n^4-n^3-n^2-n-1. 5
 -1, -4, 1, 122, 683, 2344, 6221, 14006, 28087, 51668, 88889, 144946, 226211, 340352, 496453, 705134, 978671, 1331116, 1778417, 2338538, 3031579, 3879896, 4908221, 6143782, 7616423, 9358724, 11406121, 13797026, 16572947, 19778608, 23462069, 27674846, 32472031, 37912412, 44058593 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS More generally, the ordinary generating function for the values of quintic polynomial b*n^5 + p*n^4 + q*n^3 + k*n^2 + m*n + r, is (r + (b + p + q + k + m - 5*r)*x + (13*b + 5*p + q - k - 2*m + 5*r)*2*x^2 + (33*b - 3*q + 3*m - 5*r)*2*x^3 + (26*b - 10*p + 2*q + 2*k - 4*m + 5*r)*x^4 + (b - p + q - k + m - r)*x^5)/(1 - x)^6. - Ilya Gutkovskiy, Mar 31 2016 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..580 Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1) FORMULA G.f.: (-1 + 2*x + 10*x^2 + 76*x^3 + 31*x^4 + 2*x^5)/(1 - x)^6. - Ilya Gutkovskiy, Mar 31 2016 MATHEMATICA Table[n^5 - n^4 - n^3 - n^2 - n - 1, {n, 0, 41}] PROG (Magma) [n^5-n^4-n^3-n^2-n-1: n in [0..60]]; // Vincenzo Librandi, Apr 26 2011 (PARI) a(n) = n^5-n^4-n^3-n^2-n-1; \\ Michel Marcus, Mar 31 2016 CROSSREFS Cf. A125082, A083074. Sequence in context: A280620 A262405 A152841 * A094423 A262404 A299522 Adjacent sequences: A125080 A125081 A125082 * A125084 A125085 A125086 KEYWORD sign,easy AUTHOR Artur Jasinski, Nov 19 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 4 13:02 EDT 2023. Contains 363128 sequences. (Running on oeis4.)