login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A125083
a(n) = n^5-n^4-n^3-n^2-n-1.
5
-1, -4, 1, 122, 683, 2344, 6221, 14006, 28087, 51668, 88889, 144946, 226211, 340352, 496453, 705134, 978671, 1331116, 1778417, 2338538, 3031579, 3879896, 4908221, 6143782, 7616423, 9358724, 11406121, 13797026, 16572947, 19778608, 23462069, 27674846, 32472031, 37912412, 44058593
OFFSET
0,2
COMMENTS
More generally, the ordinary generating function for the values of quintic polynomial b*n^5 + p*n^4 + q*n^3 + k*n^2 + m*n + r, is (r + (b + p + q + k + m - 5*r)*x + (13*b + 5*p + q - k - 2*m + 5*r)*2*x^2 + (33*b - 3*q + 3*m - 5*r)*2*x^3 + (26*b - 10*p + 2*q + 2*k - 4*m + 5*r)*x^4 + (b - p + q - k + m - r)*x^5)/(1 - x)^6. - Ilya Gutkovskiy, Mar 31 2016
FORMULA
G.f.: (-1 + 2*x + 10*x^2 + 76*x^3 + 31*x^4 + 2*x^5)/(1 - x)^6. - Ilya Gutkovskiy, Mar 31 2016
MATHEMATICA
Table[n^5 - n^4 - n^3 - n^2 - n - 1, {n, 0, 41}]
PROG
(Magma) [n^5-n^4-n^3-n^2-n-1: n in [0..60]]; // Vincenzo Librandi, Apr 26 2011
(PARI) a(n) = n^5-n^4-n^3-n^2-n-1; \\ Michel Marcus, Mar 31 2016
CROSSREFS
Sequence in context: A280620 A262405 A152841 * A094423 A262404 A299522
KEYWORD
sign,easy
AUTHOR
Artur Jasinski, Nov 19 2006
STATUS
approved