OFFSET
0,2
COMMENTS
More generally, the ordinary generating function for the values of quintic polynomial b*n^5 + p*n^4 + q*n^3 + k*n^2 + m*n + r, is (r + (b + p + q + k + m - 5*r)*x + (13*b + 5*p + q - k - 2*m + 5*r)*2*x^2 + (33*b - 3*q + 3*m - 5*r)*2*x^3 + (26*b - 10*p + 2*q + 2*k - 4*m + 5*r)*x^4 + (b - p + q - k + m - r)*x^5)/(1 - x)^6. - Ilya Gutkovskiy, Mar 31 2016
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..580
Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1)
FORMULA
G.f.: (-1 + 2*x + 10*x^2 + 76*x^3 + 31*x^4 + 2*x^5)/(1 - x)^6. - Ilya Gutkovskiy, Mar 31 2016
MATHEMATICA
Table[n^5 - n^4 - n^3 - n^2 - n - 1, {n, 0, 41}]
PROG
(Magma) [n^5-n^4-n^3-n^2-n-1: n in [0..60]]; // Vincenzo Librandi, Apr 26 2011
(PARI) a(n) = n^5-n^4-n^3-n^2-n-1; \\ Michel Marcus, Mar 31 2016
CROSSREFS
KEYWORD
sign,easy
AUTHOR
Artur Jasinski, Nov 19 2006
STATUS
approved