

A083074


n^3  n^2  n  1.


5



1, 2, 1, 14, 43, 94, 173, 286, 439, 638, 889, 1198, 1571, 2014, 2533, 3134, 3823, 4606, 5489, 6478, 7579, 8798, 10141, 11614, 13223, 14974, 16873, 18926, 21139, 23518, 26069, 28798, 31711, 34814, 38113, 41614, 45323, 49246, 53389, 57758, 62359, 67198, 72281
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


COMMENTS

Values of tribonacci polynomial n^3  n^2  n  1 for n >= 0.  Artur Jasinski, Nov 19 2006


LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..780
Index entries for linear recurrences with constant coefficients, signature (4,6,4,1).


FORMULA

a(n) = n^3 + 5n^2 + 7n + 1 = (n(n + 2)^3 + 1)/(n + 1) [with a different offset].


MATHEMATICA

Table[n^3  n^2  n  1, {n, 0, 41}] (* Artur Jasinski, Nov 19 2006 *)
LinearRecurrence[{4, 6, 4, 1}, {1, 2, 1, 14}, 50] (* Harvey P. Dale, Oct 11 2020 *)


PROG

(MAGMA) [n^3  n^2  n  1: n in [0..60]]; // Vincenzo Librandi, Apr 26 2011
(PARI) a(n)=n^3n^2n1 \\ Charles R Greathouse IV, Oct 07 2015


CROSSREFS

Apart from initial terms, a column of A083064.
Cf. A000027, A028387, A002378.
Sequence in context: A124026 A106204 A290603 * A181869 A141510 A219899
Adjacent sequences: A083071 A083072 A083073 * A083075 A083076 A083077


KEYWORD

easy,sign


AUTHOR

Paul Barry, Apr 21 2003


EXTENSIONS

Simpler definition from Alonso del Arte, Sep 16 2004


STATUS

approved



