login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A106204
Expansion of (chi(-q^3)^8 + 16*q^2/ chi(-q^3)^8)^(1/8) in powers of q where chi() is a Ramanujan theta function.
1
1, 0, 2, -1, -14, 30, 140, -434, -1370, 6579, 13020, -100040, -101611, 1500338, 245954, -22069601, 14502792, 316451640, -480024439, -4385787620, 10970363300, 57983545059, -217649312794, -714104478148, 3986473537118, 7776402179076
OFFSET
0,3
COMMENTS
Ramanujan theta functions: f(q) := Product_{k>=1} (1-(-q)^k) (see A121373), phi(q) := theta_3(q) := Sum_{k=-oo..oo} q^(k^2) (A000122), psi(q) := Sum_{k>=0} q^(k*(k+1)/2) (A010054), chi(q) := Product_{k>=0} (1+q^(2k+1)) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of q^(1/8)*((eta(q^3)/ eta(q^6))^8 + 16*(eta(q^6)/ eta(q^3))^8)^(1/8) in powers of q.
MATHEMATICA
eta[q_]:= q^(1/24)*QPochhammer[q]; a[n_] := SeriesCoefficient[q^(1/8)*((eta[q^3]/eta[q^6])^8 + 16*(eta[q^6]/eta[q^3])^8)^(1/8), {q, 0, n}]; Table[a[n], {n, 0, 50}] (* G. C. Greubel, Mar 07 2018 *)
PROG
(PARI) {a(n)=local(A); if(n<0, 0, A=x*O(x^n); A=(eta(x^3+A)/eta(x^6+A))^8; polcoeff( (A+16*x^2/A)^(1/8), n))}
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, Apr 25 2005
STATUS
approved