login
A379843
Least number x such that there are exactly n sets of positive integers > 1 with sum + product = x. Position of first appearance of n in A379679.
0
2, 1, 14, 44, 47, 89, 119, 179, 159, 239, 335, 539, 599, 744, 359, 719, 839
OFFSET
0,1
COMMENTS
Warning: Do not confuse with the multiset version A379543.
EXAMPLE
We have a(4) = 47 due to the following four sets: {5,7}, {2,15}, {3,11}, {2,3,6}.
MATHEMATICA
nn=100;
strfacs[n_]:=If[n<=1, {{}}, Join@@Table[Map[Prepend[#, d]&, Select[strfacs[n/d], Min@@#>d&]], {d, Rest[Divisors[n]]}]];
mnrm[s_]:=If[Min@@s==1, mnrm[DeleteCases[s-1, 0]]+1, 0];
s=Table[Length[Select[Join@@Array[strfacs, n], Total[#]+Times@@#==n&]], {n, nn}];
Table[Position[s, k-1][[1, 1]], {k, mnrm[s+1]}]
CROSSREFS
For multisets instead of sets we have A379543, firsts of A379669.
Positions of first appearances in A379679, see A379842.
Arrays counting multisets by sum and product:
- partitions: A379666, antidiagonal sums A379667
- partitions without ones: A379668, antidiagonal sums A379669
- strict partitions: A379671, antidiagonal sums A379672
- strict partitions without ones: A379678, antidiagonal sums A379679.
A000041 counts integer partitions, strict A000009.
A001055 counts integer factorizations, strict A045778.
A002865 counts partitions into parts > 1, strict A025147.
A318950 counts factorizations by sum.
Sequence in context: A106204 A290603 A083074 * A346378 A181869 A141510
KEYWORD
nonn,more
AUTHOR
Gus Wiseman, Jan 15 2025
STATUS
approved