login
A379669
Number of finite multisets of positive integers > 1 with sum + product = n.
15
0, 1, 0, 0, 1, 0, 1, 0, 2, 0, 1, 1, 1, 0, 3, 1, 1, 1, 1, 2, 2, 0, 1, 2, 4, 0, 3, 1, 1, 3, 1, 1, 2, 2, 3, 3, 2, 0, 2, 3, 2, 2, 4, 1, 4, 0, 3, 4, 2, 2, 2, 3, 1, 2, 4, 2, 3, 0, 1, 8, 3, 1, 4, 2, 3, 3, 2, 1, 3, 5, 1, 4, 3, 1, 4, 2, 7, 2, 3, 4, 3, 0, 2, 4, 6, 2, 4, 4
OFFSET
0,9
EXAMPLE
The partition (3,2,2) has sum + product equal to 7 + 12 = 19, so is counted under a(19).
The a(n) partitions for n = 4, 8, 14, 24, 59:
(2) (4) (7) (12) (9,5)
(2,2) (4,2) (4,4) (11,4)
(2,2,2) (4,2,2) (14,3)
(2,2,2,2) (19,2)
(4,4,3)
(11,2,2)
(4,3,2,2)
(3,2,2,2,2)
MATHEMATICA
Table[Length[Select[Select[Join@@Array[IntegerPartitions, n+1, 0], FreeQ[#, 1]&], Total[#]+Times@@#==n&]], {n, 0, 30}]
CROSSREFS
Arrays counting multisets by sum and product:
- partitions: A379666, antidiagonal sums A379667
- partitions without ones: A379668, antidiagonal sums A379669 (this) (zeros A379670)
- strict partitions: A379671, antidiagonal sums A379672
- strict partitions without ones: A379678, antidiagonal sums A379679 (zeros A379680)
Counting and ranking multisets by comparing sum and product:
- same: A001055 (strict A045778), ranks A301987
- divisible: A057567, ranks A326155
- divisor: A057568, ranks A326149, see A326156, A326172, A379733
- greater: A096276 shifted right, ranks A325038
- greater or equal: A096276, ranks A325044
- less: A114324, ranks A325037, see A318029
- less or equal: A319005, ranks A379721
- different: A379736, ranks A379722, see A111133
A000041 counts integer partitions, strict A000009.
A025147 counts strict partitions into parts > 1, non-strict A002865.
A318950 counts factorizations by sum.
A326622 counts factorizations with integer mean, strict A328966.
Sequence in context: A328458 A099362 A321378 * A307039 A243046 A058940
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jan 03 2025
STATUS
approved