login
Number of finite multisets of positive integers > 1 with sum + product = n.
16

%I #6 Jan 03 2025 23:28:40

%S 0,1,0,0,1,0,1,0,2,0,1,1,1,0,3,1,1,1,1,2,2,0,1,2,4,0,3,1,1,3,1,1,2,2,

%T 3,3,2,0,2,3,2,2,4,1,4,0,3,4,2,2,2,3,1,2,4,2,3,0,1,8,3,1,4,2,3,3,2,1,

%U 3,5,1,4,3,1,4,2,7,2,3,4,3,0,2,4,6,2,4,4

%N Number of finite multisets of positive integers > 1 with sum + product = n.

%e The partition (3,2,2) has sum + product equal to 7 + 12 = 19, so is counted under a(19).

%e The a(n) partitions for n = 4, 8, 14, 24, 59:

%e (2) (4) (7) (12) (9,5)

%e (2,2) (4,2) (4,4) (11,4)

%e (2,2,2) (4,2,2) (14,3)

%e (2,2,2,2) (19,2)

%e (4,4,3)

%e (11,2,2)

%e (4,3,2,2)

%e (3,2,2,2,2)

%t Table[Length[Select[Select[Join@@Array[IntegerPartitions,n+1,0],FreeQ[#,1]&],Total[#]+Times@@#==n&]],{n,0,30}]

%Y Arrays counting multisets by sum and product:

%Y - partitions: A379666, antidiagonal sums A379667

%Y - partitions without ones: A379668, antidiagonal sums A379669 (this) (zeros A379670)

%Y - strict partitions: A379671, antidiagonal sums A379672

%Y - strict partitions without ones: A379678, antidiagonal sums A379679 (zeros A379680)

%Y Counting and ranking multisets by comparing sum and product:

%Y - same: A001055 (strict A045778), ranks A301987

%Y - divisible: A057567, ranks A326155

%Y - divisor: A057568, ranks A326149, see A326156, A326172, A379733

%Y - greater: A096276 shifted right, ranks A325038

%Y - greater or equal: A096276, ranks A325044

%Y - less: A114324, ranks A325037, see A318029

%Y - less or equal: A319005, ranks A379721

%Y - different: A379736, ranks A379722, see A111133

%Y A000041 counts integer partitions, strict A000009.

%Y A025147 counts strict partitions into parts > 1, non-strict A002865.

%Y A318950 counts factorizations by sum.

%Y A326622 counts factorizations with integer mean, strict A328966.

%Y Cf. A003963, A069016, A319000, A319057, A319916, A325036, A326152, A326178, A379720.

%K nonn

%O 0,9

%A _Gus Wiseman_, Jan 03 2025