login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A379733
Number of strict integer partitions of n whose product of parts is a multiple of n.
20
1, 1, 1, 1, 1, 2, 1, 1, 2, 3, 1, 5, 1, 5, 7, 7, 1, 12, 1, 20, 15, 11, 1, 48, 12, 16, 33, 61, 1, 121, 1, 105, 67, 34, 126, 292, 1, 49, 128, 471, 1, 522, 1, 387, 751, 96, 1, 1556, 246, 792, 422, 869, 1, 2126, 1191, 2904, 726, 240, 1, 6393, 1, 321, 5460, 6711
OFFSET
1,6
COMMENTS
Partitions of this type are ranked by the squarefree terms of A326149.
EXAMPLE
The a(n) partitions for n = 1, 6, 10, 12, 15, 18:
(1) (6) (10) (12) (15) (18)
(3,2,1) (5,3,2) (5,4,3) (6,5,4) (12,6)
(5,4,1) (6,4,2) (7,5,3) (9,5,4)
(8,3,1) (9,5,1) (9,6,3)
(6,3,2,1) (10,3,2) (9,7,2)
(6,5,3,1) (9,8,1)
(5,4,3,2,1) (6,5,4,3)
(7,6,3,2)
(8,6,3,1)
(9,4,3,2)
(9,6,2,1)
(12,3,2,1)
MAPLE
b:= proc(n, i, t) option remember; `if`(i*(i+1)/2<n, 0,
`if`(n=0, `if`(t=1, 1, 0), b(n, i-1, t)+
b(n-i, min(i-1, n-i), t/igcd(i, t))))
end:
a:= n-> `if`(isprime(n), 1, b(n$3)):
seq(a(n), n=1..70); # Alois P. Heinz, Jan 07 2025
MATHEMATICA
Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&Divisible[Times@@#, n]&]], {n, 30}]
CROSSREFS
The non-strict opposite version is A057567, ranks A326155.
The non-strict version is A057568, ranks A326149.
The case of partitions without 1's is A379735, non-strict A379734.
A319005 counts partitions with product >= sum, ranks A379721.
A114324 counts partitions with product greater than sum, ranks A325037.
Sequence in context: A379003 A217612 A029254 * A063740 A072782 A337014
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jan 07 2025
STATUS
approved