login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A325037 Heinz numbers of integer partitions whose product of parts is greater than their sum. 16
1, 15, 21, 25, 27, 33, 35, 39, 42, 45, 49, 50, 51, 54, 55, 57, 63, 65, 66, 69, 70, 75, 77, 78, 81, 85, 87, 90, 91, 93, 95, 98, 99, 100, 102, 105, 110, 111, 114, 115, 117, 119, 121, 123, 125, 126, 129, 130, 132, 133, 135, 138, 140, 141, 143, 145, 147, 150, 153 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1) * ... * prime(y_k), so these are numbers whose product of prime indices (A003963) is greater than their sum of prime indices (A056239).

The enumeration of these partitions by sum is given by A114324.

LINKS

Alois P. Heinz, Table of n, a(n) for n = 1..10000

FORMULA

A003963(a(n)) > A056239(a(n)).

EXAMPLE

The sequence of terms together with their prime indices begins:

   1: {}

  15: {2,3}

  21: {2,4}

  25: {3,3}

  27: {2,2,2}

  33: {2,5}

  35: {3,4}

  39: {2,6}

  42: {1,2,4}

  45: {2,2,3}

  49: {4,4}

  50: {1,3,3}

  51: {2,7}

  54: {1,2,2,2}

  55: {3,5}

  57: {2,8}

  63: {2,2,4}

  65: {3,6}

  66: {1,2,5}

  69: {2,9}

  70: {1,3,4}

  75: {2,3,3}

  77: {4,5}

  78: {1,2,6}

  81: {2,2,2,2}

MAPLE

q:= n-> (l-> mul(i, i=l)>add(i, i=l))(map(i->

    numtheory[pi](i[1])$i[2], ifactors(n)[2])):

select(q, [$1..200])[];  # Alois P. Heinz, Mar 27 2019

MATHEMATICA

primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];

Select[Range[100], Times@@primeMS[#]>Plus@@primeMS[#]&]

CROSSREFS

Cf. A000720, A003963, A056239, A112798, A178503, A175508, A301987, A319000.

Cf. A325032, A325033, A325036, A325038, A325041, A325042, A325044.

Sequence in context: A294171 A306102 A177024 * A154545 A156063 A181780

Adjacent sequences:  A325034 A325035 A325036 * A325038 A325039 A325040

KEYWORD

nonn

AUTHOR

Gus Wiseman, Mar 25 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 1 13:11 EDT 2020. Contains 334762 sequences. (Running on oeis4.)