login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A325044 Heinz numbers of integer partitions whose sum of parts is greater than or equal to their product. 17
2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 22, 23, 24, 26, 28, 29, 30, 31, 32, 34, 36, 37, 38, 40, 41, 43, 44, 46, 47, 48, 52, 53, 56, 58, 59, 60, 61, 62, 64, 67, 68, 71, 72, 73, 74, 76, 79, 80, 82, 83, 84, 86, 88, 89, 92, 94, 96, 97, 101 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1) * ... * prime(y_k), so these are numbers whose product of prime indices (A003963) is less than or equal to their sum of prime indices (A056239).

The enumeration of these partitions by sum is given by A096276.

LINKS

Table of n, a(n) for n=1..67.

FORMULA

A003963(a(n)) <= A056239(a(n)).

a(n) = A325038(n)/2.

Union of A301987 and A325038.

EXAMPLE

The sequence of terms together with their prime indices begins:

   2: {1}

   3: {2}

   4: {1,1}

   5: {3}

   6: {1,2}

   7: {4}

   8: {1,1,1}

   9: {2,2}

  10: {1,3}

  11: {5}

  12: {1,1,2}

  13: {6}

  14: {1,4}

  16: {1,1,1,1}

  17: {7}

  18: {1,2,2}

  19: {8}

  20: {1,1,3}

  22: {1,5}

  23: {9}

  24: {1,1,1,2}

MATHEMATICA

primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];

Select[Range[100], Times@@primeMS[#]<=Plus@@primeMS[#]&]

CROSSREFS

Cf. A000720, A003963, A056239, A112798, A178503, A175508, A301987, A319000.

Cf. A325032, A325033, A325036, A325037, A325038, A325041, A325042.

Sequence in context: A070776 A320230 A076564 * A303550 A164563 A179892

Adjacent sequences:  A325041 A325042 A325043 * A325045 A325046 A325047

KEYWORD

nonn

AUTHOR

Gus Wiseman, Mar 25 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 5 18:48 EDT 2020. Contains 334854 sequences. (Running on oeis4.)