login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A325046
G.f.: Sum_{n>=0} x^n * (1 + x^n)^n / (1 - x^(n+1))^(n+1).
3
1, 2, 3, 4, 6, 8, 9, 16, 16, 18, 36, 34, 27, 68, 76, 58, 86, 122, 170, 176, 99, 206, 436, 350, 192, 392, 574, 690, 840, 730, 657, 804, 1328, 2218, 2070, 846, 910, 2794, 4012, 3818, 3306, 3176, 4109, 4280, 4546, 8550, 11694, 9366, 5726, 5016, 8338, 15636, 23498, 24736, 16434, 8474, 14423, 28616, 32114, 31256, 42116, 51828, 50476, 42378, 28306, 26454, 56358, 101900, 133758, 132356, 87490, 41024, 53475, 109392, 158936, 190868, 232342, 265698, 221026, 158178, 200048, 269954, 239516, 206696, 314724, 516784, 710010, 774678, 576170, 255094, 134523
OFFSET
0,2
COMMENTS
Odd terms occur only at positions n*(n+1) for n >= 0 (conjecture).
LINKS
FORMULA
G.f.: Sum_{n>=0} x^n * (1 + x^n)^n / (1 - x^(n+1))^(n+1).
G.f.: Sum_{n>=0} x^n * Sum_{k=0..n} binomial(n,k) * (x^n + x^k)^(n-k).
G.f.: Sum_{n>=0} x^n * Sum_{k=0..n} binomial(n,k) * Sum_{j=0..n-k} binomial(n-k,j) * x^((n-k)*(n-j)).
EXAMPLE
G.f.: A(x) = 1 + 2*x + 3*x^2 + 4*x^3 + 6*x^4 + 8*x^5 + 9*x^6 + 16*x^7 + 16*x^8 + 18*x^9 + 36*x^10 + 34*x^11 + 27*x^12 + 68*x^13 + 76*x^14 + 58*x^15 + 86*x^16 + 122*x^17 + 170*x^18 + 176*x^19 + 99*x^20 + 206*x^21 + 436*x^22 + 350*x^23 + 192*x^24 + 392*x^25 + 574*x^26 + 690*x^27 + 840*x^28 + 730*x^29 + 657*x^30 + 804*x^31 + 1328*x^32 + 2218*x^33 + 2070*x^34 + 846*x^35 + 910*x^36 + 2794*x^37 + 4012*x^38 + 3818*x^39 + 3306*x^40 + 3176*x^41 + 4109*x^42 + ...
such that
A(x) = 1/(1 - x) + x*(1 + x)/(1 - x^2)^2 + x^2*(1 + x^2)^2/(1 - x^3)^3 + x^3*(1 + x^3)^3/(1 - x^4)^4 + x^4*(1 + x^4)^4/(1 - x^5)^5 + x^5*(1 + x^5)^5/(1 - x^6)^6 + x^6*(1 + x^6)^6/(1 - x^7)^7 + x^7*(1 + x^7)^7/(1 - x^8)^8 + ...
ODD TERMS.
It appears that odd terms occur only at n*(n+1); the odd terms begin:
[1, 3, 9, 27, 99, 657, 4109, 14423, 53475, 134523, 1686983, 13421711, 85848955, 325004679, 1482972731, 6258674687, 43509358107, ..., A325047(n), ...].
The terms at positions n*(n+2), for n >= 0, start as:
[1, 4, 16, 58, 192, 846, 5726, 42378, 200048, 816738, 1924336, 10968450, 79124014, 854427564, 4293474170, 23269170810, 100555730012, 543827171600, ...].
TRIANGLE FORM.
This sequence may be written as a triangle like so
1, 2;
3, 4, 6, 8;
9, 16, 16, 18, 36, 34;
27, 68, 76, 58, 86, 122, 170, 176;
99, 206, 436, 350, 192, 392, 574, 690, 840, 730;
657, 804, 1328, 2218, 2070, 846, 910, 2794, 4012, 3818, 3306, 3176;
4109, 4280, 4546, 8550, 11694, 9366, 5726, 5016, 8338, 15636, 23498, 24736, 16434, 8474;
14423, 28616, 32114, 31256, 42116, 51828, 50476, 42378, 28306, 26454, 56358, 101900, 133758, 132356, 87490, 41024;
53475, 109392, 158936, 190868, 232342, 265698, 221026, 158178, 200048, 269954, 239516, 206696, 314724, 516784, 710010, 774678, 576170, 255094; ...
in which the odd terms form the leftmost border.
PROG
(PARI) {a(n) = my(A=sum(m=0, n, x^m * (1 + x^m +x*O(x^n))^m/(1 - x^(m+1) +x*O(x^n))^(m+1) )); polcoeff(A, n)}
for(n=0, 120, print1(a(n), ", "))
CROSSREFS
Cf. A325047 (odd terms), A323557 (variant).
Sequence in context: A343377 A073667 A326497 * A160256 A151545 A353383
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Mar 26 2019
STATUS
approved