login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f.: Sum_{n>=0} x^n * (1 + x^n)^n / (1 - x^(n+1))^(n+1).
3

%I #15 Jun 11 2022 11:42:24

%S 1,2,3,4,6,8,9,16,16,18,36,34,27,68,76,58,86,122,170,176,99,206,436,

%T 350,192,392,574,690,840,730,657,804,1328,2218,2070,846,910,2794,4012,

%U 3818,3306,3176,4109,4280,4546,8550,11694,9366,5726,5016,8338,15636,23498,24736,16434,8474,14423,28616,32114,31256,42116,51828,50476,42378,28306,26454,56358,101900,133758,132356,87490,41024,53475,109392,158936,190868,232342,265698,221026,158178,200048,269954,239516,206696,314724,516784,710010,774678,576170,255094,134523

%N G.f.: Sum_{n>=0} x^n * (1 + x^n)^n / (1 - x^(n+1))^(n+1).

%C Odd terms occur only at positions n*(n+1) for n >= 0 (conjecture).

%H Paul D. Hanna, <a href="/A325046/b325046.txt">Table of n, a(n) for n = 0..10100</a>

%F G.f.: Sum_{n>=0} x^n * (1 + x^n)^n / (1 - x^(n+1))^(n+1).

%F G.f.: Sum_{n>=0} x^n * Sum_{k=0..n} binomial(n,k) * (x^n + x^k)^(n-k).

%F G.f.: Sum_{n>=0} x^n * Sum_{k=0..n} binomial(n,k) * Sum_{j=0..n-k} binomial(n-k,j) * x^((n-k)*(n-j)).

%e G.f.: A(x) = 1 + 2*x + 3*x^2 + 4*x^3 + 6*x^4 + 8*x^5 + 9*x^6 + 16*x^7 + 16*x^8 + 18*x^9 + 36*x^10 + 34*x^11 + 27*x^12 + 68*x^13 + 76*x^14 + 58*x^15 + 86*x^16 + 122*x^17 + 170*x^18 + 176*x^19 + 99*x^20 + 206*x^21 + 436*x^22 + 350*x^23 + 192*x^24 + 392*x^25 + 574*x^26 + 690*x^27 + 840*x^28 + 730*x^29 + 657*x^30 + 804*x^31 + 1328*x^32 + 2218*x^33 + 2070*x^34 + 846*x^35 + 910*x^36 + 2794*x^37 + 4012*x^38 + 3818*x^39 + 3306*x^40 + 3176*x^41 + 4109*x^42 + ...

%e such that

%e A(x) = 1/(1 - x) + x*(1 + x)/(1 - x^2)^2 + x^2*(1 + x^2)^2/(1 - x^3)^3 + x^3*(1 + x^3)^3/(1 - x^4)^4 + x^4*(1 + x^4)^4/(1 - x^5)^5 + x^5*(1 + x^5)^5/(1 - x^6)^6 + x^6*(1 + x^6)^6/(1 - x^7)^7 + x^7*(1 + x^7)^7/(1 - x^8)^8 + ...

%e ODD TERMS.

%e It appears that odd terms occur only at n*(n+1); the odd terms begin:

%e [1, 3, 9, 27, 99, 657, 4109, 14423, 53475, 134523, 1686983, 13421711, 85848955, 325004679, 1482972731, 6258674687, 43509358107, ..., A325047(n), ...].

%e The terms at positions n*(n+2), for n >= 0, start as:

%e [1, 4, 16, 58, 192, 846, 5726, 42378, 200048, 816738, 1924336, 10968450, 79124014, 854427564, 4293474170, 23269170810, 100555730012, 543827171600, ...].

%e TRIANGLE FORM.

%e This sequence may be written as a triangle like so

%e 1, 2;

%e 3, 4, 6, 8;

%e 9, 16, 16, 18, 36, 34;

%e 27, 68, 76, 58, 86, 122, 170, 176;

%e 99, 206, 436, 350, 192, 392, 574, 690, 840, 730;

%e 657, 804, 1328, 2218, 2070, 846, 910, 2794, 4012, 3818, 3306, 3176;

%e 4109, 4280, 4546, 8550, 11694, 9366, 5726, 5016, 8338, 15636, 23498, 24736, 16434, 8474;

%e 14423, 28616, 32114, 31256, 42116, 51828, 50476, 42378, 28306, 26454, 56358, 101900, 133758, 132356, 87490, 41024;

%e 53475, 109392, 158936, 190868, 232342, 265698, 221026, 158178, 200048, 269954, 239516, 206696, 314724, 516784, 710010, 774678, 576170, 255094; ...

%e in which the odd terms form the leftmost border.

%o (PARI) {a(n) = my(A=sum(m=0, n, x^m * (1 + x^m +x*O(x^n))^m/(1 - x^(m+1) +x*O(x^n))^(m+1) )); polcoeff(A, n)}

%o for(n=0, 120, print1(a(n), ", "))

%Y Cf. A325047 (odd terms), A323557 (variant).

%K nonn

%O 0,2

%A _Paul D. Hanna_, Mar 26 2019