login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A325048
a(n) = Product_{i=0..n, j=0..n} (i!^2 + j!^2).
1
2, 16, 80000, 17272267776000000, 277884245560378426290863196025651200000000, 3337940951837185557810120427617693521487357301121536848574225250643001642844160000000000
OFFSET
0,1
FORMULA
a(n) ~ c * 2^(n*(n+3)) * Pi^(n*(n+2)) * n^((n+1)*(2*n+1)*(2*n+3)/3) / exp(2*n*(2*n+3)*(4*n+3)/9), where c = 401.488675138779168689540247334821476110398137334270208637438...
MATHEMATICA
Table[Product[i!^2 + j!^2, {i, 0, n}, {j, 0, n}], {n, 0, 7}]
Clear[a]; a[n_] := a[n] = If[n == 0, 2, a[n-1] * Product[k!^2 + n!^2, {k, 0, n}]^2 / (2*n!^2)]; Table[a[n], {n, 0, 7}]
PROG
(Python)
from math import prod, factorial as f
def a(n): return prod(f(i)**2+f(j)**2 for i in range(n) for j in range(n))
print([a(n) for n in range(1, 7)]) # Michael S. Branicky, Feb 16 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Mar 26 2019
STATUS
approved