login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A325050
a(n) = Product_{k=0..n} (k!^2 + 1).
1
2, 4, 20, 740, 426980, 6148938980, 3187616116170980, 80970552724144881738980, 131634021973939424914920841290980, 17333817381151204925617274632152908873802980, 228254990993381085562170532497621436371926846785405002980
OFFSET
0,1
FORMULA
a(n) ~ c * n^(n^2 + 2*n + 5/6) * (2*Pi)^(n+1) / (A^2 * exp(3*n^2/2 + 2*n - 1/6)), where c = Product_{k>=0} (1 + 1/k!^2) = 5.1481781945902396880952694880498895... and A is the Glaisher-Kinkelin constant A074962.
MATHEMATICA
Table[Product[k!^2 + 1, {k, 0, n}], {n, 0, 12}]
Table[BarnesG[n+2]^2 * Product[1 + 1/k!^2, {k, 0, n}], {n, 0, 12}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Mar 26 2019
STATUS
approved