The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A325051 a(n) = Product_{i=0..n, j=0..n, k=0..n} (i!*j!*k! + 1). 1
 2, 256, 19131876000000, 20879156515576282948808247752954619590255260568062500000000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS Next term is too long to be included. LINKS FORMULA a(n) ~ c * (2*Pi)^(3*n^3/2 + 9*n^2/2 + 9*n/2 + 3/2) * n^((n+1)^2*(6*n^2 + 12*n + 5)/4) / (A^(3*(n+1)^2) * exp(9*n^4/4 + 15*n^3/2 + 8*n^2 + 9*n/4 - 59/80)), where A is the Glaisher-Kinkelin constant A074962 and c = Product_{i>=0, j>=0, k>=0} (1 + 1/(i!*j!*k!)) = 10013049.64089403856780758322163675337812476527762657951330... MATHEMATICA Table[Product[i!*j!*k! + 1, {i, 0, n}, {j, 0, n}, {k, 0, n}], {n, 0, 5}] Table[BarnesG[n+2]^(3*(n+1)^2) * Product[1 + 1/(i!*j!*k!), {i, 0, n}, {j, 0, n}, {k, 0, n}], {n, 0, 5}] CROSSREFS Cf. A306907, A325049. Sequence in context: A067480 A062077 A190539 * A240551 A078168 A003380 Adjacent sequences:  A325048 A325049 A325050 * A325052 A325053 A325054 KEYWORD nonn AUTHOR Vaclav Kotesovec, Mar 26 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 25 02:55 EDT 2022. Contains 354047 sequences. (Running on oeis4.)