login
A325052
a(n) = Product_{i=0..n, j=0..n, k=0..n} (i! + j! + k!).
3
3, 6561, 10319560704000000, 47749397192482757629144508002855841842593792000000000
OFFSET
0,1
COMMENTS
Next term is too long to be included.
FORMULA
a(n) ~ c * 2^(n^3/2 + 3*n^2 + 3*n) * 3^n * Pi^(n^3/2 + 3*n^2/2 + 3*n/2) * n^(3*n^4/4 + 3*n^3 + 17*n^2/4 + 5*n/2 + 601/120) / exp(15*n^4/16 + 3*n^3 + 3*n^2 - 21*n/4), where c = 28023.0953536911860317693532637428153075420958129597133...
MATHEMATICA
Table[Product[i! + j! + k!, {i, 0, n}, {j, 0, n}, {k, 0, n}], {n, 0, 5}]
Clear[a]; a[n_] := a[n] = If[n == 0, 3, a[n-1] * Product[k! + j! + n!, {j, 0, n}, {k, 0, n}]^3 * (3*n!) / (Product[k! + 2*n!, {k, 0, n}]^3)]; Table[a[n], {n, 0, 5}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Mar 26 2019
STATUS
approved