login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A283019
Primes which are the sum of three nonzero 8th powers.
3
3, 6563, 72353, 137633, 787811, 1745153, 7444673, 44726593, 49202147, 61503553, 86093443, 91858243, 100006817, 100072097, 101686177, 107444417, 143046977, 200006561, 214756067, 257412163, 300452323, 430372577, 431661313, 435812033, 447149537, 452523713, 489805633, 530372321, 744340577
OFFSET
1,1
COMMENTS
Primes of form x^8 + y^8 + z^8 where x, y, z > 0.
EXAMPLE
3 = 1^8 + 1^8 + 1^8;
6563 = 1^8 + 1^8 + 3^8;
72353 = 2^8 + 3^8 + 4^8, etc.
MATHEMATICA
nn = 13; Select[Union[Plus @@@ (Tuples[Range[nn], {3}]^8)], # <= nn^8 && PrimeQ[#] &]
PROG
(PARI) list(lim)=my(v=List(), A, B, t); lim\=1; for(a=1, sqrtnint(lim-2, 8), A=a^8; for(b=1, min(sqrtnint(lim-A-1, 8), a), B=A+b^8; forstep(c=if(B%2, 2, 1), sqrtnint(lim-B, 8), 2, if(isprime(t=B+c^8), listput(v, t))))); Set(v) \\ Charles R Greathouse IV, Nov 05 2017
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Feb 26 2017
STATUS
approved