|
|
A085317
|
|
Primes which are the sum of three nonzero squares.
|
|
16
|
|
|
3, 11, 17, 19, 29, 41, 43, 53, 59, 61, 67, 73, 83, 89, 97, 101, 107, 109, 113, 131, 137, 139, 149, 157, 163, 173, 179, 181, 193, 197, 211, 227, 229, 233, 241, 251, 257, 269, 277, 281, 283, 293, 307, 313, 317, 331, 337, 347, 349, 353, 373, 379, 389, 397, 401
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
This sequence consists of the primes p (not 5, 13, or 37) such that p == 1, 3 or 5 (mod 8). The density of these primes is 0.75. - T. D. Noe, May 21 2004
Primes of the form a^2 + b^2 + c^2 with 1 <= a <= b <= c. - Zak Seidov, Nov 08 2013
|
|
LINKS
|
|
|
EXAMPLE
|
101 is a term since 101 = 64 + 36 + 1 = 8^2 + 6^2 + 1^2.
|
|
MATHEMATICA
|
lst={}; lim=32; Do[n=a^2+b^2+c^2; If[n<lim^2 && PrimeQ[n], lst=Union[lst, {n}]], {a, lim}, {b, a, Sqrt[lim^2-a^2]}, {c, b, Sqrt[lim^2-a^2-b^2]}]; lst
With[{nn=30}, Select[Union[Total/@Tuples[Range[nn]^2, 3]], PrimeQ[#]&& #<= nn^2+2&]] (* Harvey P. Dale, Jun 18 2022 *)
|
|
CROSSREFS
|
Cf. A094712 (primes that are not the sum of three positive squares).
Cf. A094713 (number of ways that prime(n) can be represented as a^2+b^2+c^2 with a >= b >= c > 0).
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|