login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A085317 Primes which are the sum of three nonzero squares. 16
3, 11, 17, 19, 29, 41, 43, 53, 59, 61, 67, 73, 83, 89, 97, 101, 107, 109, 113, 131, 137, 139, 149, 157, 163, 173, 179, 181, 193, 197, 211, 227, 229, 233, 241, 251, 257, 269, 277, 281, 283, 293, 307, 313, 317, 331, 337, 347, 349, 353, 373, 379, 389, 397, 401 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
This sequence consists of the primes p (not 5, 13, or 37) such that p == 1, 3 or 5 (mod 8). The density of these primes is 0.75. - T. D. Noe, May 21 2004
Primes of the form a^2 + b^2 + c^2 with 1 <= a <= b <= c. - Zak Seidov, Nov 08 2013
LINKS
EXAMPLE
101 is a term since 101 = 64 + 36 + 1 = 8^2 + 6^2 + 1^2.
MATHEMATICA
lst={}; lim=32; Do[n=a^2+b^2+c^2; If[n<lim^2 && PrimeQ[n], lst=Union[lst, {n}]], {a, lim}, {b, a, Sqrt[lim^2-a^2]}, {c, b, Sqrt[lim^2-a^2-b^2]}]; lst
With[{nn=30}, Select[Union[Total/@Tuples[Range[nn]^2, 3]], PrimeQ[#]&& #<= nn^2+2&]] (* Harvey P. Dale, Jun 18 2022 *)
CROSSREFS
Cf. A000408.
Cf. A094712 (primes that are not the sum of three positive squares).
Cf. A094713 (number of ways that prime(n) can be represented as a^2+b^2+c^2 with a >= b >= c > 0).
Sequence in context: A322171 A038946 A095280 * A210311 A033200 A369171
KEYWORD
nonn
AUTHOR
Labos Elemer, Jul 01 2003
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 7 23:52 EDT 2024. Contains 375749 sequences. (Running on oeis4.)