login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A085315
Numbers such that first reversing digits and after forming its cube equals the result of first-form-cube and after-reverse operation with exclusion of cases divisible by 10.
3
1, 2, 7, 11, 101, 111, 1001, 1011, 1101, 10001, 10011, 10101, 11001, 11011, 100001, 100011, 100101, 100111, 101001, 101011, 101101, 110001, 110011, 110101, 111001, 1000001, 1000011, 1000101, 1000111, 1001001, 1001011, 1001101, 1010001, 1010011, 1011001, 1100001, 1100011, 1100101, 1101001, 1110001
OFFSET
1,2
FORMULA
Solutions to rev[x^3]=rev[x]^3 without numbers divisible by 10.
{ A069494 } minus { A008592 }. - Alois P. Heinz, Oct 22 2021
EXAMPLE
n=100111,rev[n]=111001, n^3=1003333697667631.
rev[n^3]=111001^3=1367667963333001=rev[n]^3.
MAPLE
r:= n-> (s-> parse(cat(seq(s[-i], i=1..length(s)))))(""||n):
q:= n-> irem(n, 10)>0 and r(n^3)=r(n)^3:
select(q, [$1..2000000])[]; # Alois P. Heinz, Oct 22 2021
MATHEMATICA
nd[x_, y_] := 10*x+y; tn[x_] := Fold[nd, 0, x] rt[x_] := tn[Reverse[IntegerDigits[x]]] Do[s=rt[n^3]; s1=rt[n]^3; If[Equal[s, s1]&& !Equal[Mod[n, 10], 0], k=k+1; Print[n]], {n, 1, 10000000}]; k
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Labos Elemer, Jul 01 2003
STATUS
approved