login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A069494
Numbers n such that (reversal(n))^3 = reversal(n^3). Ignore leading 0's.
1
0, 1, 2, 7, 10, 11, 20, 70, 100, 101, 110, 111, 200, 700, 1000, 1001, 1010, 1011, 1100, 1101, 1110, 2000, 7000, 10000, 10001, 10010, 10011, 10100, 10101, 10110, 11000, 11001, 11010, 11011, 11100, 20000, 70000, 100000, 100001, 100010, 100011, 100100, 100101
OFFSET
1,3
COMMENTS
For an arithmetical function f, call the arguments n such that f(reverse(n)) = reverse(f(n)) the "palinpoints" of f. This sequence is the sequence of palinpoints of f(n) = n^3.
EXAMPLE
Let f(n) = n^3. Then f(1011) = 1033364331, f(1101) = 1334633301, so f(reverse(1011)) = reverse(f(1011)). Therefore 1011 belongs to the sequence.
MAPLE
r:= n-> (s-> parse(cat(seq(s[-i], i=1..length(s)))))(""||n):
q:= n-> is(r(n^3)=r(n)^3):
select(q, [$0..200000])[]; # Alois P. Heinz, Oct 22 2021
MATHEMATICA
rev[n_] := FromDigits[Reverse[IntegerDigits[n]]]; f[n_] := n^3; Select[Range[10^5], f[rev[ # ]] == rev[f[ # ]] &]
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Joseph L. Pe, Apr 15 2002
EXTENSIONS
More terms from Alois P. Heinz, Oct 22 2021
STATUS
approved