login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A095280
Lower Wythoff primes, i.e., primes in A000201.
4
3, 11, 17, 19, 29, 37, 43, 53, 59, 61, 67, 71, 79, 97, 101, 103, 113, 127, 131, 137, 139, 163, 173, 179, 181, 197, 199, 211, 223, 229, 239, 241, 257, 263, 271, 281, 283, 307, 313, 317, 331, 347, 349, 359, 367, 373, 383, 389, 401, 409, 419, 433
OFFSET
1,1
COMMENTS
Contains all primes p whose Zeckendorf-expansion A014417(p) ends with an even number of 0's.
For generalizations and conjectures, see A184774.
MAPLE
R:= NULL: count:= 0:
for n from 1 while count < 100 do
p:= floor(n*phi);
if isprime(p) then R:= R, p; count:= count+1 fi
od:
R; # Robert Israel, Jan 17 2023
MATHEMATICA
(See A184792.)
PROG
(Python)
from math import isqrt
from itertools import count, islice
from sympy import isprime
def A095280_gen(): # generator of terms
return filter(isprime, ((n+isqrt(5*n**2)>>1) for n in count(1)))
A095280_list = list(islice(A095280_gen(), 30)) # Chai Wah Wu, Aug 16 2022
CROSSREFS
Intersection of A000040 & A000201. Complement of A095281 in A000040. Cf. A095080, A095083, A095084, A095290, A184792, A184793, A184794, A184796.
Sequence in context: A154497 A322171 A038946 * A085317 A210311 A033200
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jun 04 2004
STATUS
approved