The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A095080 Fibeven primes, i.e., primes p whose Zeckendorf-expansion A014417(p) ends with zero. 4
 2, 3, 5, 7, 11, 13, 23, 29, 31, 37, 41, 47, 71, 73, 79, 83, 89, 97, 107, 109, 113, 131, 139, 149, 151, 157, 167, 173, 181, 191, 193, 199, 223, 227, 233, 241, 251, 257, 269, 277, 283, 293, 311, 317, 337, 353, 359, 367, 379, 397, 401, 409, 419, 421 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 LINKS Alois P. Heinz, Table of n, a(n) for n = 1..10000 A. Karttunen and J. Moyer, C-program for computing the initial terms of this sequence MAPLE F:= combinat[fibonacci]: b:= proc(n) option remember; local j;       if n=0 then 0     else for j from 2 while F(j+1)<=n do od;          b(n-F(j))+2^(j-2)       fi     end: a:= proc(n) option remember; local p;       p:= `if`(n=1, 1, a(n-1));       do p:= nextprime(p);          if b(p)::even then break fi       od; p     end: seq(a(n), n=1..100);  # Alois P. Heinz, Mar 27 2016 PROG (Python) from sympy import fibonacci, primerange def a(n):     k=0     x=0     while n>0:         k=0         while fibonacci(k)<=n: k+=1         x+=10**(k - 3)         n-=fibonacci(k - 1)     return x def ok(n):     return str(a(n))[-1]=="0" print([n for n in primerange(1, 1001) if ok(n)]) # Indranil Ghosh, Jun 07 2017 CROSSREFS Intersection of A000040 and A022342. Union of A095082 and A095087. Cf. A095060, A095081. Sequence in context: A334041 A181172 A075430 * A229289 A087634 A291691 Adjacent sequences:  A095077 A095078 A095079 * A095081 A095082 A095083 KEYWORD nonn,changed AUTHOR Antti Karttunen, Jun 01 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 15 08:59 EDT 2021. Contains 343909 sequences. (Running on oeis4.)