login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A095080
Fibeven primes, i.e., primes p whose Zeckendorf-expansion A014417(p) ends with zero.
4
2, 3, 5, 7, 11, 13, 23, 29, 31, 37, 41, 47, 71, 73, 79, 83, 89, 97, 107, 109, 113, 131, 139, 149, 151, 157, 167, 173, 181, 191, 193, 199, 223, 227, 233, 241, 251, 257, 269, 277, 283, 293, 311, 317, 337, 353, 359, 367, 379, 397, 401, 409, 419, 421
OFFSET
1,1
MAPLE
F:= combinat[fibonacci]:
b:= proc(n) option remember; local j;
if n=0 then 0
else for j from 2 while F(j+1)<=n do od;
b(n-F(j))+2^(j-2)
fi
end:
a:= proc(n) option remember; local p;
p:= `if`(n=1, 1, a(n-1));
do p:= nextprime(p);
if b(p)::even then break fi
od; p
end:
seq(a(n), n=1..100); # Alois P. Heinz, Mar 27 2016
MATHEMATICA
F = Fibonacci;
b[n_] := b[n] = Module[{j},
If[n == 0, 0, For[j = 2, F[j + 1] <= n, j++];
b[n - F[j]] + 2^(j - 2)]];
a[n_] := a[n] = Module[{p},
p = If[n == 1, 1, a[n - 1]]; While[True,
p = NextPrime[p]; If[ EvenQ[b[p]], Break[]]]; p];
Array[a, 100] (* Jean-François Alcover, Jul 01 2021, after Alois P. Heinz *)
PROG
(Python)
from sympy import fibonacci, primerange
def a(n):
k=0
x=0
while n>0:
k=0
while fibonacci(k)<=n: k+=1
x+=10**(k - 3)
n-=fibonacci(k - 1)
return x
def ok(n):
return str(a(n))[-1]=="0"
print([n for n in primerange(1, 1001) if ok(n)]) # Indranil Ghosh, Jun 07 2017
CROSSREFS
Intersection of A000040 and A022342. Union of A095082 and A095087. Cf. A095060, A095081.
Sequence in context: A334041 A181172 A075430 * A350179 A229289 A087634
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jun 01 2004
STATUS
approved