login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A095080 Fibeven primes, i.e., primes p whose Zeckendorf-expansion A014417(p) ends with zero. 4
2, 3, 5, 7, 11, 13, 23, 29, 31, 37, 41, 47, 71, 73, 79, 83, 89, 97, 107, 109, 113, 131, 139, 149, 151, 157, 167, 173, 181, 191, 193, 199, 223, 227, 233, 241, 251, 257, 269, 277, 283, 293, 311, 317, 337, 353, 359, 367, 379, 397, 401, 409, 419, 421 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

LINKS

Alois P. Heinz, Table of n, a(n) for n = 1..10000

A. Karttunen and J. Moyer, C-program for computing the initial terms of this sequence

MAPLE

F:= combinat[fibonacci]:

b:= proc(n) option remember; local j;

      if n=0 then 0

    else for j from 2 while F(j+1)<=n do od;

         b(n-F(j))+2^(j-2)

      fi

    end:

a:= proc(n) option remember; local p;

      p:= `if`(n=1, 1, a(n-1));

      do p:= nextprime(p);

         if b(p)::even then break fi

      od; p

    end:

seq(a(n), n=1..100);  # Alois P. Heinz, Mar 27 2016

PROG

(Python)

from sympy import fibonacci, primerange

def a(n):

    k=0

    x=0

    while n>0:

        k=0

        while fibonacci(k)<=n: k+=1

        x+=10**(k - 3)

        n-=fibonacci(k - 1)

    return x

def ok(n):

    return str(a(n))[-1]=="0"

print([n for n in primerange(1, 1001) if ok(n)]) # Indranil Ghosh, Jun 07 2017

CROSSREFS

Intersection of A000040 and A022342. Union of A095082 and A095087. Cf. A095060, A095081.

Sequence in context: A334041 A181172 A075430 * A229289 A087634 A291691

Adjacent sequences:  A095077 A095078 A095079 * A095081 A095082 A095083

KEYWORD

nonn,changed

AUTHOR

Antti Karttunen, Jun 01 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 15 08:59 EDT 2021. Contains 343909 sequences. (Running on oeis4.)