login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A095081 Fibodd primes, i.e., primes p whose Zeckendorf-expansion A014417(p) ends with one. 4
17, 19, 43, 53, 59, 61, 67, 101, 103, 127, 137, 163, 179, 197, 211, 229, 239, 263, 271, 281, 307, 313, 331, 347, 349, 373, 383, 389, 433, 449, 457, 467, 491, 499, 509, 569, 577, 593, 601, 619, 643, 653, 661, 677, 739, 773, 787, 797, 821, 823 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

LINKS

Alois P. Heinz, Table of n, a(n) for n = 1..10000

A. Karttunen and J. Moyer, C-program for computing the initial terms of this sequence

MATHEMATICA

r = Map[Fibonacci, Range[2, 12]]; Select[Prime@ Range@ 144, Last@ Flatten@ Map[Position[r, #] &, Abs@ Differences@ NestWhileList[Function[k, k - SelectFirst[Reverse@ r, # < k &]], # + 1, # > 1 &]] == 1 &] (* Michael De Vlieger, Mar 27 2016, Version 10 *)

PROG

(PARI)

genit(maxx)={for(n=1, maxx, q=(n-1)+(n+sqrtint(5*n^2))\2; if(isprime(q), print1(q, ", "))); } \\ Bill McEachen, Mar 26 2016

(Python)

from sympy import fibonacci, primerange

def a(n):

    k=0

    x=0

    while n>0:

        k=0

        while fibonacci(k)<=n: k+=1

        x+=10**(k - 3)

        n-=fibonacci(k - 1)

    return x

def ok(n):

    return str(a(n))[-1]=="1"

print([n for n in primerange(1, 1001) if ok(n)]) # Indranil Ghosh, Jun 07 2017

CROSSREFS

Intersection of A000040 and A003622. Union of A095086 and A095089. Cf. A095061, A095080.

Sequence in context: A289492 A262286 A108024 * A243437 A144709 A132239

Adjacent sequences:  A095078 A095079 A095080 * A095082 A095083 A095084

KEYWORD

nonn

AUTHOR

Antti Karttunen, Jun 01 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 20 11:30 EDT 2021. Contains 345164 sequences. (Running on oeis4.)