The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A095081 Fibodd primes, i.e., primes p whose Zeckendorf-expansion A014417(p) ends with one. 4
 17, 19, 43, 53, 59, 61, 67, 101, 103, 127, 137, 163, 179, 197, 211, 229, 239, 263, 271, 281, 307, 313, 331, 347, 349, 373, 383, 389, 433, 449, 457, 467, 491, 499, 509, 569, 577, 593, 601, 619, 643, 653, 661, 677, 739, 773, 787, 797, 821, 823 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 LINKS Alois P. Heinz, Table of n, a(n) for n = 1..10000 A. Karttunen and J. Moyer, C-program for computing the initial terms of this sequence MATHEMATICA r = Map[Fibonacci, Range[2, 12]]; Select[Prime@ Range@ 144, Last@ Flatten@ Map[Position[r, #] &, Abs@ Differences@ NestWhileList[Function[k, k - SelectFirst[Reverse@ r, # < k &]], # + 1, # > 1 &]] == 1 &] (* Michael De Vlieger, Mar 27 2016, Version 10 *) PROG (PARI) genit(maxx)={for(n=1, maxx, q=(n-1)+(n+sqrtint(5*n^2))\2; if(isprime(q), print1(q, ", "))); } \\ Bill McEachen, Mar 26 2016 (Python) from sympy import fibonacci, primerange def a(n):     k=0     x=0     while n>0:         k=0         while fibonacci(k)<=n: k+=1         x+=10**(k - 3)         n-=fibonacci(k - 1)     return x def ok(n):     return str(a(n))[-1]=="1" print([n for n in primerange(1, 1001) if ok(n)]) # Indranil Ghosh, Jun 07 2017 CROSSREFS Intersection of A000040 and A003622. Union of A095086 and A095089. Cf. A095061, A095080. Sequence in context: A289492 A262286 A108024 * A243437 A144709 A132239 Adjacent sequences:  A095078 A095079 A095080 * A095082 A095083 A095084 KEYWORD nonn AUTHOR Antti Karttunen, Jun 01 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 20 11:30 EDT 2021. Contains 345164 sequences. (Running on oeis4.)