Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #18 Jan 17 2023 15:34:37
%S 3,11,17,19,29,37,43,53,59,61,67,71,79,97,101,103,113,127,131,137,139,
%T 163,173,179,181,197,199,211,223,229,239,241,257,263,271,281,283,307,
%U 313,317,331,347,349,359,367,373,383,389,401,409,419,433
%N Lower Wythoff primes, i.e., primes in A000201.
%C Contains all primes p whose Zeckendorf-expansion A014417(p) ends with an even number of 0's.
%C For generalizations and conjectures, see A184774.
%H Robert Israel, <a href="/A095280/b095280.txt">Table of n, a(n) for n = 1..10000</a>
%H Antti Karttunen and J. Moyer, <a href="/A095062/a095062.c.txt">C-program for computing the initial terms of this sequence</a>
%p R:= NULL: count:= 0:
%p for n from 1 while count < 100 do
%p p:= floor(n*phi);
%p if isprime(p) then R:= R,p; count:= count+1 fi
%p od:
%p R; # _Robert Israel_, Jan 17 2023
%t (See A184792.)
%o (Python)
%o from math import isqrt
%o from itertools import count, islice
%o from sympy import isprime
%o def A095280_gen(): # generator of terms
%o return filter(isprime,((n+isqrt(5*n**2)>>1) for n in count(1)))
%o A095280_list = list(islice(A095280_gen(),30)) # _Chai Wah Wu_, Aug 16 2022
%Y Intersection of A000040 & A000201. Complement of A095281 in A000040. Cf. A095080, A095083, A095084, A095290, A184792, A184793, A184794, A184796.
%K nonn
%O 1,1
%A _Antti Karttunen_, Jun 04 2004