login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Primes which are the sum of three nonzero 8th powers.
3

%I #11 Nov 05 2017 21:01:28

%S 3,6563,72353,137633,787811,1745153,7444673,44726593,49202147,

%T 61503553,86093443,91858243,100006817,100072097,101686177,107444417,

%U 143046977,200006561,214756067,257412163,300452323,430372577,431661313,435812033,447149537,452523713,489805633,530372321,744340577

%N Primes which are the sum of three nonzero 8th powers.

%C Primes of form x^8 + y^8 + z^8 where x, y, z > 0.

%H Chai Wah Wu, <a href="/A283019/b283019.txt">Table of n, a(n) for n = 1..10000</a>

%e 3 = 1^8 + 1^8 + 1^8;

%e 6563 = 1^8 + 1^8 + 3^8;

%e 72353 = 2^8 + 3^8 + 4^8, etc.

%t nn = 13; Select[Union[Plus @@@ (Tuples[Range[nn], {3}]^8)], # <= nn^8 && PrimeQ[#] &]

%o (PARI) list(lim)=my(v=List(),A,B,t); lim\=1; for(a=1,sqrtnint(lim-2,8), A=a^8; for(b=1,min(sqrtnint(lim-A-1,8),a), B=A+b^8; forstep(c=if(B%2,2,1),sqrtnint(lim-B,8),2, if(isprime(t=B+c^8), listput(v,t))))); Set(v) \\ _Charles R Greathouse IV_, Nov 05 2017

%Y Cf. A001016, A003381, A006686, A007490, A085317, A085318, A085319, A283017, A283018.

%K nonn

%O 1,1

%A _Ilya Gutkovskiy_, Feb 26 2017