login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A283017
Primes which are the sum of three nonzero 6th powers.
3
3, 857, 1459, 4889, 50753, 51481, 66377, 119107, 210961, 262937, 308801, 525017, 531569, 539633, 562691, 766739, 797681, 840241, 1000793, 1046657, 1078507, 1772291, 1864873, 2303003, 2834443, 2986777, 3032641, 3107729, 3365777, 4757609, 4804201, 5135609, 5987593, 7530329, 7534361, 7743529, 8061041
OFFSET
1,1
COMMENTS
Primes of form x^6 + y^6 + z^6 where x, y, z > 0.
LINKS
EXAMPLE
3 = 1^6 + 1^6 + 1^6;
857 = 2^6 + 2^6 + 3^6;
1459 = 1^6 + 3^6 + 3^6, etc.
MAPLE
N:= 10^8: # to get all terms <= N
S:= [seq(i^6, i=1..floor(N^(1/6)))]:
S3:= {seq(seq(seq(S[i]+S[j]+S[k], k=1..j), j=1..i), i=1..nops(S))}:
sort(convert(select(t -> t <= N and isprime(t), S3), list)); # Robert Israel, Mar 09 2017
MATHEMATICA
nn = 15; Select[Union[Plus @@@ (Tuples[Range[nn], {3}]^6)], # <= nn^6 && PrimeQ[#] &]
PROG
(PARI) list(lim)=my(v=List(), a6, a6b6, t); lim\=1; for(a=1, sqrtnint(lim-2, 6), a6=a^6; for(b=1, min(sqrtnint(lim-a6-1, 6), a), a6b6=a6+b^6; forstep(c=if(a6b6%2, 2, 1), min(sqrtnint(lim-a6b6, 6), b), 2, if(isprime(t=a6b6+c^6), listput(v, t))))); Set(v) \\ Charles R Greathouse IV, Mar 09 2017
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Feb 26 2017
STATUS
approved