login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A252762
Numbers n such that the sum of the pentagonal numbers P(n), P(n+1), P(n+2) and P(n+3) is equal to the hexagonal number H(m) for some m.
2
3, 853, 165735, 32151993, 6237321163, 1210008153885, 234735344532783, 45537446831206273, 8834029949909484435, 1713756272835608774373, 332459882900158192744183, 64495503526357853783597385, 12511795224230523475825148763, 2427223777997195196456295262893
OFFSET
1,1
COMMENTS
Also positive integers x in the solutions to 12*x^2-4*y^2+32*x+2*y+36 = 0, the corresponding values of y being A252763.
FORMULA
a(n) = 195*a(n-1)-195*a(n-2)+a(n-3).
G.f.: x*(15*x^2-268*x-3) / ((x-1)*(x^2-194*x+1)).
a(n) = -4/3+1/24*(97+56*sqrt(3))^(-n)*(-164-95*sqrt(3)+(97+56*sqrt(3))^(2*n)*(-164+95*sqrt(3))). - Colin Barker, Mar 02 2016
a(n) = 194*a(n-1)-a(n-2)+256. - Vincenzo Librandi, Mar 03 2016
EXAMPLE
3 is in the sequence because P(3)+P(4)+P(5)+P(6) = 12+22+35+51 = 120 = H(8).
MATHEMATICA
LinearRecurrence[{195, -195, 1}, {3, 853, 165735}, 30] (* Vincenzo Librandi, Mar 03 2016 *)
PROG
(PARI) Vec(x*(15*x^2-268*x-3)/((x-1)*(x^2-194*x+1)) + O(x^100))
(Magma) I:=[3, 853]; [n le 2 select I[n] else 194*Self(n-1) - Self(n-2)+256: n in [1..20]]; // Vincenzo Librandi, Mar 03 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Colin Barker, Dec 21 2014
STATUS
approved