OFFSET
1,1
COMMENTS
Also positive integers x in the solutions to 12*x^2-4*y^2+32*x+2*y+36 = 0, the corresponding values of y being A252763.
LINKS
Colin Barker, Table of n, a(n) for n = 1..437
Index entries for linear recurrences with constant coefficients, signature (195,-195,1).
FORMULA
a(n) = 195*a(n-1)-195*a(n-2)+a(n-3).
G.f.: x*(15*x^2-268*x-3) / ((x-1)*(x^2-194*x+1)).
a(n) = -4/3+1/24*(97+56*sqrt(3))^(-n)*(-164-95*sqrt(3)+(97+56*sqrt(3))^(2*n)*(-164+95*sqrt(3))). - Colin Barker, Mar 02 2016
a(n) = 194*a(n-1)-a(n-2)+256. - Vincenzo Librandi, Mar 03 2016
EXAMPLE
3 is in the sequence because P(3)+P(4)+P(5)+P(6) = 12+22+35+51 = 120 = H(8).
MATHEMATICA
LinearRecurrence[{195, -195, 1}, {3, 853, 165735}, 30] (* Vincenzo Librandi, Mar 03 2016 *)
PROG
(PARI) Vec(x*(15*x^2-268*x-3)/((x-1)*(x^2-194*x+1)) + O(x^100))
(Magma) I:=[3, 853]; [n le 2 select I[n] else 194*Self(n-1) - Self(n-2)+256: n in [1..20]]; // Vincenzo Librandi, Mar 03 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Colin Barker, Dec 21 2014
STATUS
approved