login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A252765
Number of distinct n-colored necklaces with n beads per color.
2
1, 1, 2, 188, 3941598, 24934429725024, 74171603795480180204640, 150277870737901828652705825755721760, 283839436431731355577562936415156522873876247241520, 655934428473920614716696820356119117524334608980167506174657536026880
OFFSET
0,3
LINKS
FORMULA
a(n) = Sum_{d|n} phi(n/d)*(n*d)!/(d!^k*n^2) for n>0, a(0) = 1.
From Vaclav Kotesovec, Aug 23 2015: (Start)
a(n) ~ (n^2)! / (n^2 * (n!)^n).
a(n) ~ n^(n^2 - n/2 - 1) / (exp(1/12) * (2*Pi)^((n-1)/2)).
(End)
MAPLE
with(numtheory):
a:= n-> `if`(n=0, 1, add(phi(n/d)*(n*d)!/(d!^n*n^2), d=divisors(n))):
seq(a(n), n=0..10);
MATHEMATICA
a[n_] := If[n == 0, 1, DivisorSum[n, EulerPhi[n/#]*(n*#)!/(#!^n*n^2)&]];
Table[a[n], {n, 0, 10}] (* Jean-François Alcover, Mar 25 2017, translated from Maple *)
CROSSREFS
Main diagonal of A208183.
Sequence in context: A232703 A135126 A053936 * A172801 A318195 A307587
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Dec 21 2014
STATUS
approved