|
|
A135126
|
|
Numbers such that the digital sums in bases 3, 4, 5 and 6 all are equal.
|
|
1
|
|
|
1, 2, 188, 668, 908, 1388, 1628, 2170, 2171, 2830, 2831, 3908, 4330, 4331, 6490, 6491, 8650, 8651, 10390, 10391, 10629, 12792, 12793, 12794, 17110, 17111, 17290, 17291, 25930, 25931, 36312, 36313, 36314, 37812, 37813, 37814, 41532, 41533, 41534
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
LINKS
|
G. C. Greubel, Table of n, a(n) for n = 1..1400
|
|
EXAMPLE
|
a(3)=188, since ds_3(188)=ds_4(188)=ds_5(188)=ds_6(188)=8, where ds_x=digital sum base x.
|
|
MATHEMATICA
|
Select[Range[3000], Total[IntegerDigits[#, 3]] == Total[IntegerDigits[#, 4]] == Total[IntegerDigits[#, 5]] == Total[IntegerDigits[#, 6]] &] (* G. C. Greubel, Sep 27 2016 *)
|
|
CROSSREFS
|
Cf. A007953, A054899, A131451, A133620, A133900, A134599, A135100, A135110, A135120, A037308.
Sequence in context: A258426 A163794 A232703 * A053936 A252765 A172801
Adjacent sequences: A135123 A135124 A135125 * A135127 A135128 A135129
|
|
KEYWORD
|
nonn,base
|
|
AUTHOR
|
Hieronymus Fischer, Dec 31 2007
|
|
STATUS
|
approved
|
|
|
|