|
|
A135125
|
|
Numbers such that the digital sum base 2 and the digital sum base 5 and the digital sum base 10 all are equal.
|
|
1
|
|
|
1, 1300, 1301, 5010, 5011, 7102, 7103, 10050, 10051, 10235, 11135, 12250, 12251, 14015, 16102, 16103, 20060, 20061, 20206, 20207, 23230, 23231, 32012, 32013, 32302, 32303, 32410, 32411, 44000, 44001, 45010, 45011, 50012, 50013, 50300
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
LINKS
|
G. C. Greubel, Table of n, a(n) for n = 1..989
|
|
EXAMPLE
|
a(2)=1300, since ds_2(1300)=ds_5(1300)=ds_10(1300), where ds_x=digital sum base x.
|
|
MATHEMATICA
|
Select[Range[10000], Total[IntegerDigits[#, 2]] == Total[IntegerDigits[#, 5]] == Total[IntegerDigits[#, 10]] &] (* G. C. Greubel, Sep 27 2016 *)
|
|
CROSSREFS
|
Cf. A007953, A054899, A131451, A133620, A133900, A134599, A135100, A135110, A135120, A037308.
Sequence in context: A031750 A031534 A252468 * A204945 A204941 A022057
Adjacent sequences: A135122 A135123 A135124 * A135126 A135127 A135128
|
|
KEYWORD
|
nonn,base
|
|
AUTHOR
|
Hieronymus Fischer, Dec 31 2007
|
|
STATUS
|
approved
|
|
|
|