login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 


A208183
Number of distinct k-colored necklaces with n beads per color; square array A(n,k), n>=0, k>=0, read by antidiagonals.
16
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 6, 16, 4, 1, 1, 1, 24, 318, 188, 10, 1, 1, 1, 120, 11352, 30804, 2896, 26, 1, 1, 1, 720, 623760, 11211216, 3941598, 50452, 80, 1, 1, 1, 5040, 48648960, 7623616080, 15277017432, 586637256, 953056, 246, 1, 1
OFFSET
0,12
COMMENTS
From Vaclav Kotesovec, Aug 23 2015: (Start)
Column k > 1 is asymptotic to k^(k*n-1/2) / ((2*Pi)^((k-1)/2) * n^((k+1)/2)).
Row r > 0 is asymptotic to (r*n)! / (r*n*(r!)^n). (End)
LINKS
FORMULA
A(n,k) = Sum_{d|n} phi(n/d)*(k*d)!/(d!^k*k*n) if n,k>0; A(n,k) = 1 else.
A(n,k) = Sum_{i=1..n} (k*gcd(n,i))!/(gcd(n,i)!^k*k*n) = Sum_{i=1..n} (k*n/gcd(n,i))!/((n/gcd(n,i))!^k*k*n)*phi(gcd(n,i))/phi(n/gcd(n,i)) for n,k >= 1, where phi = A000010. - Richard L. Ollerton, May 19 2021
EXAMPLE
A(1,4) = 6: {0123, 0132, 0213, 0231, 0312, 0321}.
A(3,2) = 4: {000111, 001011, 010011, 010101}.
A(4,2) = 10: {00001111, 00010111, 00100111, 01000111, 00011011, 00110011, 00101011, 01010011, 01001011, 01010101}.
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, ...
1, 1, 1, 2, 6, 24, ...
1, 1, 2, 16, 318, 11352, ...
1, 1, 4, 188, 30804, 11211216, ...
1, 1, 10, 2896, 3941598, 15277017432, ...
1, 1, 26, 50452, 586637256, 24934429725024, ...
MAPLE
with(numtheory):
A:= (n, k)-> `if`(n=0 or k=0, 1,
add(phi(n/d) *(k*d)!/(d!^k *k*n), d=divisors(n))):
seq(seq(A(n, d-n), n=0..d), d=0..10);
MATHEMATICA
A[n_, k_] := If[n == 0 || k == 0, 1, Sum[EulerPhi[n/d]*(k*d)!/(d!^k*k*n), {d, Divisors[n]}]]; Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 10}] // Flatten (* Jean-François Alcover, Dec 27 2013, translated from Maple *)
CROSSREFS
Columns k=0+1, 2-8 give: A000012, A003239, A118644, A207816, A208190, A208191, A208192, A208193.
Main diagonal gives A252765.
Sequence in context: A253586 A347621 A318191 * A214810 A257248 A090737
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Feb 24 2012
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 20 08:53 EDT 2024. Contains 376067 sequences. (Running on oeis4.)