OFFSET
0,12
COMMENTS
From Vaclav Kotesovec, Aug 23 2015: (Start)
Column k > 1 is asymptotic to k^(k*n-1/2) / ((2*Pi)^((k-1)/2) * n^((k+1)/2)).
Row r > 0 is asymptotic to (r*n)! / (r*n*(r!)^n). (End)
LINKS
Alois P. Heinz, Antidiagonals n = 0..35, flattened
FORMULA
A(n,k) = Sum_{d|n} phi(n/d)*(k*d)!/(d!^k*k*n) if n,k>0; A(n,k) = 1 else.
A(n,k) = Sum_{i=1..n} (k*gcd(n,i))!/(gcd(n,i)!^k*k*n) = Sum_{i=1..n} (k*n/gcd(n,i))!/((n/gcd(n,i))!^k*k*n)*phi(gcd(n,i))/phi(n/gcd(n,i)) for n,k >= 1, where phi = A000010. - Richard L. Ollerton, May 19 2021
EXAMPLE
A(1,4) = 6: {0123, 0132, 0213, 0231, 0312, 0321}.
A(3,2) = 4: {000111, 001011, 010011, 010101}.
A(4,2) = 10: {00001111, 00010111, 00100111, 01000111, 00011011, 00110011, 00101011, 01010011, 01001011, 01010101}.
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, ...
1, 1, 1, 2, 6, 24, ...
1, 1, 2, 16, 318, 11352, ...
1, 1, 4, 188, 30804, 11211216, ...
1, 1, 10, 2896, 3941598, 15277017432, ...
1, 1, 26, 50452, 586637256, 24934429725024, ...
MAPLE
with(numtheory):
A:= (n, k)-> `if`(n=0 or k=0, 1,
add(phi(n/d) *(k*d)!/(d!^k *k*n), d=divisors(n))):
seq(seq(A(n, d-n), n=0..d), d=0..10);
MATHEMATICA
A[n_, k_] := If[n == 0 || k == 0, 1, Sum[EulerPhi[n/d]*(k*d)!/(d!^k*k*n), {d, Divisors[n]}]]; Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 10}] // Flatten (* Jean-François Alcover, Dec 27 2013, translated from Maple *)
CROSSREFS
Main diagonal gives A252765.
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Feb 24 2012
STATUS
approved