The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A257248 a(1) = 0; and for n > 1, if A079559(n) = 1, then a(n) = 1 + a(A213714(n)-1), otherwise a(n) = a(A234017(n)). 4
 0, 0, 1, 1, 0, 1, 2, 2, 1, 1, 2, 0, 1, 2, 3, 3, 2, 2, 2, 1, 1, 3, 1, 2, 2, 3, 0, 1, 2, 3, 4, 4, 3, 3, 3, 2, 2, 3, 2, 2, 2, 4, 1, 1, 3, 2, 3, 1, 3, 4, 2, 2, 1, 2, 3, 3, 4, 0, 1, 2, 3, 4, 5, 5, 4, 4, 4, 3, 3, 4, 3, 3, 3, 4, 2, 2, 3, 3, 3, 2, 3, 5, 2, 2, 2, 2, 4, 4, 3, 1, 1, 3, 2, 4, 2, 3, 4, 5, 1, 3, 3, 3, 4, 2, 3, 2, 2, 1, 4, 4, 2, 5, 1, 3, 3, 2, 3, 4, 4, 5, 0, 1, 2, 3, 4, 5, 6, 6 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,7 COMMENTS a(n) tells how many nonzero terms of A005187 are encountered when traversing toward the root of binary tree A233276, starting from the node containing n and before 1 is reached. This count includes both n (in case it is a term of A005187) but excludes the 1 and 0 at the root. See also comments in A257249, A256478 and A256991. LINKS Antti Karttunen, Table of n, a(n) for n = 1..8192 FORMULA a(1) = 0; and for n > 1, if A079559(n) = 1, then a(n) = 1 + a(A213714(n)-1), otherwise a(n) = a(A234017(n)). a(n) = A080791(A233275(n)). [Number of nonleading zeros in the binary representation of A233275(n).] Other identities. For all n >= 1: a(n) = A256478(n)-1 = A000120(A233277(n))-1. a(n) = A070939(n) - A257249(n). PROG (Scheme, alternative definitions, the first one utilizing memoizing definec-macro) (definec (A257248 n) (if (= 1 n) 0 (+ (A079559 n) (A257248 (if (zero? (A079559 n)) (A234017 n) (+ -1 (A213714 n))))))) (define (A257248 n) (- (A256478 n) 1)) CROSSREFS One less than A256478. Cf. A000120, A000325, A005187, A070939, A079559, A080791, A213714, A234017, A233275, A233276, A233277, A255559, A257249, A256991. Sequence in context: A318191 A208183 A214810 * A090737 A204016 A343334 Adjacent sequences:  A257245 A257246 A257247 * A257249 A257250 A257251 KEYWORD nonn AUTHOR Antti Karttunen, Apr 19 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 27 04:59 EST 2021. Contains 349346 sequences. (Running on oeis4.)