The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A256478 a(0) = 0; and for n >= 1, if A079559(n) = 1, then a(n) = 1 + a(A213714(n)-1), otherwise a(n) = a(A234017(n)). 7
 0, 1, 1, 2, 2, 1, 2, 3, 3, 2, 2, 3, 1, 2, 3, 4, 4, 3, 3, 3, 2, 2, 4, 2, 3, 3, 4, 1, 2, 3, 4, 5, 5, 4, 4, 4, 3, 3, 4, 3, 3, 3, 5, 2, 2, 4, 3, 4, 2, 4, 5, 3, 3, 2, 3, 4, 4, 5, 1, 2, 3, 4, 5, 6, 6, 5, 5, 5, 4, 4, 5, 4, 4, 4, 5, 3, 3, 4, 4, 4, 3, 4, 6, 3, 3, 3, 3, 5, 5, 4, 2, 2, 4, 3, 5, 3, 4, 5, 6, 2, 4, 4, 4, 5, 3, 4, 3, 3, 2, 5, 5, 3, 6, 2, 4, 4, 3, 4, 5, 5, 6, 1, 2, 3, 4, 5, 6, 7, 7 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS a(n) tells how many nonzero terms of A005187 are encountered when traversing toward the root of binary tree A233276, starting from the node containing n. This count includes both n (in case it is a term of A005187) and 1 (but not 0). See also comments in A256479 and A256991. The 1's (seem to) occur at positions given by A000325. LINKS Antti Karttunen, Table of n, a(n) for n = 0..16384 FORMULA a(0) = 0; and for n >= 1, if A079559(n) = 1, then a(n) = 1 + a(A213714(n)-1), otherwise a(n) = a(A234017(n)). a(n) = A000120(A233277(n)). [Binary weight of A233277(n).] Other identities and observations. For all n >= 1: a(n) = 1 + A257248(n) = 1 + A080791(A233275(n)). a(n) = A070939(n) - A256479(n). a(n) >= A255559(n). PROG (Scheme, with memoization-macro definec) (definec (A256478 n) (if (< n 1) n (+ (A079559 n) (A256478 (if (zero? (A079559 n)) (A234017 n) (+ -1 (A213714 n))))))) ;; Alternative definitions: (define (A256478 n) (A000120 (A233277 n))) (define (A256478 n) (if (zero? n) n (+ 1 (A080791 (A233275 n))))) CROSSREFS One more than A257248. Cf. A000120, A000325, A005187, A070939, A079559, A080791, A213714, A234017, A233275, A233276, A233277, A255559, A256479, A256991. Sequence in context: A167489 A256790 A337225 * A356245 A106638 A329400 Adjacent sequences: A256475 A256476 A256477 * A256479 A256480 A256481 KEYWORD nonn AUTHOR Antti Karttunen, Apr 15 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 10 22:52 EDT 2024. Contains 375059 sequences. (Running on oeis4.)