

A214810


Triangle read by rows: T(n,k) (n>=0, 0 <= k <= p where p = nth prime) = Bell(k) mod p (cf. A000110).


3



1, 1, 0, 1, 1, 2, 2, 1, 1, 2, 0, 0, 2, 1, 1, 2, 5, 1, 3, 0, 2, 1, 1, 2, 5, 4, 8, 5, 8, 4, 5, 2, 2, 1, 1, 2, 5, 2, 0, 8, 6, 6, 9, 2, 9, 11, 2, 1, 1, 2, 5, 15, 1, 16, 10, 9, 16, 1, 15, 11, 6, 15, 11, 14, 2, 1, 1, 2, 5, 15, 14, 13, 3, 17, 0, 18, 4, 5, 7, 14, 16, 15, 1, 10, 2, 1, 1, 2, 5, 15, 6, 19, 3, 0, 10, 9, 1, 20, 1, 12, 9, 5, 6, 6, 9, 4, 16, 22, 2, 1, 1, 2, 5, 15, 23, 0
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,6


COMMENTS

Nth row gives Bell numbers mod prime(n) and has length prime(n)+1.


REFERENCES

J. Levine and R. E. Dalton, Minimum Periods, Modulo p, of First Order Bell Exponential Integrals, Mathematics of Computation, 16 (1962), 416423. See Table 2.


LINKS

Table of n, a(n) for n=1..116.


EXAMPLE

Triangle begins:
[1, 1, 0],
[1, 1, 2, 2],
[1, 1, 2, 0, 0, 2],
[1, 1, 2, 5, 1, 3, 0, 2],
[1, 1, 2, 5, 4, 8, 5, 8, 4, 5, 2, 2],
[1, 1, 2, 5, 2, 0, 8, 6, 6, 9, 2, 9, 11, 2],
[1, 1, 2, 5, 15, 1, 16, 10, 9, 16, 1, 15, 11, 6, 15, 11, 14, 2],
[1, 1, 2, 5, 15, 14, 13, 3, 17, 0, 18, 4, 5, 7, 14, 16, 15, 1, 10, 2],
...


CROSSREFS

Cf. A000110, A054767.
Sequence in context: A253586 A318191 A208183 * A257248 A090737 A204016
Adjacent sequences: A214807 A214808 A214809 * A214811 A214812 A214813


KEYWORD

nonn,tabf


AUTHOR

N. J. A. Sloane, Jul 31 2012


STATUS

approved



