login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A214810 Triangle read by rows: T(n,k) (n>=0, 0 <= k <= p where p = n-th prime) = Bell(k) mod p (cf. A000110). 3
1, 1, 0, 1, 1, 2, 2, 1, 1, 2, 0, 0, 2, 1, 1, 2, 5, 1, 3, 0, 2, 1, 1, 2, 5, 4, 8, 5, 8, 4, 5, 2, 2, 1, 1, 2, 5, 2, 0, 8, 6, 6, 9, 2, 9, 11, 2, 1, 1, 2, 5, 15, 1, 16, 10, 9, 16, 1, 15, 11, 6, 15, 11, 14, 2, 1, 1, 2, 5, 15, 14, 13, 3, 17, 0, 18, 4, 5, 7, 14, 16, 15, 1, 10, 2, 1, 1, 2, 5, 15, 6, 19, 3, 0, 10, 9, 1, 20, 1, 12, 9, 5, 6, 6, 9, 4, 16, 22, 2, 1, 1, 2, 5, 15, 23, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,6

COMMENTS

N-th row gives Bell numbers mod prime(n) and has length prime(n)+1.

REFERENCES

J. Levine and R. E. Dalton, Minimum Periods, Modulo p, of First Order Bell Exponential Integrals, Mathematics of Computation, 16 (1962), 416-423. See Table 2.

LINKS

Table of n, a(n) for n=1..116.

EXAMPLE

Triangle begins:

[1, 1, 0],

[1, 1, 2, 2],

[1, 1, 2, 0, 0, 2],

[1, 1, 2, 5, 1, 3, 0, 2],

[1, 1, 2, 5, 4, 8, 5, 8, 4, 5, 2, 2],

[1, 1, 2, 5, 2, 0, 8, 6, 6, 9, 2, 9, 11, 2],

[1, 1, 2, 5, 15, 1, 16, 10, 9, 16, 1, 15, 11, 6, 15, 11, 14, 2],

[1, 1, 2, 5, 15, 14, 13, 3, 17, 0, 18, 4, 5, 7, 14, 16, 15, 1, 10, 2],

...

CROSSREFS

Cf. A000110, A054767.

Sequence in context: A253586 A318191 A208183 * A257248 A090737 A204016

Adjacent sequences:  A214807 A214808 A214809 * A214811 A214812 A214813

KEYWORD

nonn,tabf

AUTHOR

N. J. A. Sloane, Jul 31 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 17 13:00 EDT 2019. Contains 327131 sequences. (Running on oeis4.)