login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A214811
Triangle read by rows: row n lists prime factors of (p^p-1)/(p-1) where p = prime(n).
3
3, 13, 11, 71, 29, 4733, 15797, 1806113, 53, 264031, 1803647, 10949, 1749233, 2699538733, 109912203092239643840221, 461, 1289, 831603031789, 1920647391913, 59, 16763, 84449, 2428577, 14111459, 58320973, 549334763, 568972471024107865287021434301977158534824481, 149, 1999, 7993, 16651, 17317, 10192715656759, 41903425553544839998158239
OFFSET
1,1
LINKS
J. Levine and R. E. Dalton, Minimum Periods, Modulo p, of First Order Bell Exponential Integrals, Mathematics of Computation, 16 (1962), 416-423. See Table 3.
EXAMPLE
Triangle begins:
[3]
[13]
[11, 71]
[29, 4733]
[15797, 1806113]
[53, 264031, 1803647]
[10949, 1749233, 2699538733]
[109912203092239643840221]
[461, 1289, 831603031789, 1920647391913]
[59, 16763, 84449, 2428577, 14111459, 58320973, 549334763]
[568972471024107865287021434301977158534824481]
[149, 1999, 7993, 16651, 17317, 10192715656759, 41903425553544839998158239]
...
MAPLE
f:=proc(n) local i, t1, p, B, F;
p:=ithprime(n);
B:=(p^p-1)/(p-1);
F:=ifactors(B)[2];
lprint(n, p, B, F);
t1:=[seq(F[i][1], i=1..nops(F))];
sort(t1);
end;
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
N. J. A. Sloane, Jul 31 2012
STATUS
approved