OFFSET
1,2
COMMENTS
For p prime, a(p) divides (p^p-1)/(p-1) = A023037(p), with equality at least for p up to 19.
LINKS
J. Levine and R. E. Dalton, Minimum Periods, Modulo p, of First Order Bell Exponential Integrals, Mathematics of Computation, 16 (1962), 416-423.
W. F. Lunnon et al., Arithmetic properties of Bell numbers to a composite modulus I, Acta Arithmetica 35 (1979), pp. 1-16.
Samuel S. Wagstaff Jr., Aurifeuillian factorizations and the period of the Bell numbers modulo a prime, Math. Comp. 65 (1996), 383-391.
Eric Weisstein's World of Mathematics, Bell Number
FORMULA
If gcd(n,m) = 1, a(n*m) = lcm(a(n), a(m)). But the sequence is not in general multiplicative; e.g. a(2) = 3, a(9) = 39 and a(18) = 39. - Franklin T. Adams-Watters, Jun 06 2006
MATHEMATICA
(* Warning: this program is just a verification of the existing data
and should not be used to extend the sequence beyond a(28) *)
BellMod[k_, m_] := Mod[Sum[Mod[StirlingS2[k, j], m], {j, 1, k}], m];
BellMod[k_, 1] := BellB[k];
period[nn_List] := Module[{lgmin=2, lgmax=5, nn1},
lg=If[Length[nn]<=lgmax, lgmin, lgmax];
nn1 = nn[[1;; lg]];
km=Length[nn]-lg;
Catch[Do[If[nn1==nn[[k;; k+lg-1]], Throw[k-1]];
If[k==km, Throw[0]], {k, 2, km}]]];
dd[n_] := SelectFirst[Table[{d, n/d},
{d, Divisors[n][[2;; -2]]}], GCD@@#==1&];
a[1]=1;
a[p_?PrimeQ] := a[p] = (p^p-1)/(p-1);
a[n_/; n>4 && dd[n]!={}] := With[{g = dd[n]}, LCM[a[g[[1]]], a[g[[2]]]]];
a[n_/; MemberQ[FactorInteger[n][[All, 2]], 1]] := a[n]=
With[{pp = Select[FactorInteger[n], #1[[2]] ==1 &][[All, 1]]},
a[n/Times@@pp]*Times@@a/@pp];
a[n_/; n>4 && GCD @@ FactorInteger[n][[All, 2]]>1] := a[n]=
With[{g=GCD @@ FactorInteger[n][[All, 2]]}, n^(1/g)*a[n^(1-1/g)]];
a[n_] := period[Table[BellMod[k, n], {k, 1, 28}]];
Table[a[n], {n, 1, 28}] (* Jean-François Alcover, Jul 31 2012, updated May 06 2024 *)
CROSSREFS
KEYWORD
nonn,hard,nice
AUTHOR
Eric W. Weisstein, Feb 09 2002
EXTENSIONS
More information from Phil Carmody, Dec 22 2002
Extended by T. D. Noe, Dec 18 2008
a(26) corrected by Jean-François Alcover, Jul 31 2012
a(18) corrected by Charles R Greathouse IV, Jul 31 2012
a(27)-a(28) from Charles R Greathouse IV, Sep 07 2016
STATUS
approved