login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A054770 Numbers that are not the sum of distinct Lucas numbers 1,3,4,7,11 ... (A000204). 10
2, 6, 9, 13, 17, 20, 24, 27, 31, 35, 38, 42, 46, 49, 53, 56, 60, 64, 67, 71, 74, 78, 82, 85, 89, 93, 96, 100, 103, 107, 111, 114, 118, 122, 125, 129, 132, 136, 140, 143, 147, 150, 154, 158, 161, 165, 169, 172, 176, 179, 183, 187, 190, 194, 197, 201, 205, 208, 212 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Alternatively, Lucas representation of n includes L_0 = 2. - Fred Lunnon, Aug 25 2001

Conjecture: this is the sequence of numbers for which the base phi representation includes phi itself, where phi = (1 + sqrt(5))/2 = the golden ratio. Example: let r = phi; then 6 = r^3 + r + r^(-4). - Clark Kimberling, Oct 17 2012

LINKS

G. C. Greubel, Table of n, a(n) for n = 1..5000

L. Carlitz, R. Scoville, and V. E. Hoggatt, Jr., Lucas representations, Fibonacci Quart. 10 (1972), 29-42, 70, 112.

FORMULA

a(n) = [((5+sqrt(5))/2)n]-1 (conjectured by David W. Wilson; proved by Ian Agol (iagol(AT)math.ucdavis.edu), Jun 08 2000)

a(n) = A000201(n) + 2*n - 1. - Michel Dekking, Sep 07 2017

G.f.: x*(x+1)/(1-x)^2 + Sum_{i>=1} (floor(i*phi)*x^i), where phi = (1 + sqrt(5))/2. - Iain Fox, Dec 19 2017

Ian Agol tells me that David W. Wilson's formula is proved in the Carlitz, Scoville, Hoggatt paper 'Lucas representations'. See Equation (1.12), and use A(A(n))+n = B(n)+n-1 = A(n)+2n-1, the well known formulas for the lower Wythoff sequence A = A000201, and the upper Wythoff sequence B = A001950. - Michel Dekking, Jan 04 2018

MAPLE

A054770 := n -> floor(n*(sqrt(5)+5)/2)-1;

MATHEMATICA

Complement[Range[220], Total/@Subsets[LucasL[Range[25]], 5]] (* Harvey P. Dale, Feb 27 2012 *)

PROG

(PARI) a(n)=floor(n*(sqrt(5)+5)/2)-1

CROSSREFS

Cf. A003263, A003622, A022342. Complement of A063732.

Sequence in context: A184869 A047276 A171639 * A184745 A113689 A190707

Adjacent sequences:  A054767 A054768 A054769 * A054771 A054772 A054773

KEYWORD

nonn,easy

AUTHOR

Antreas P. Hatzipolakis (xpolakis(AT)otenet.gr), May 28 2000

EXTENSIONS

More terms from James A. Sellers, May 28 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified February 19 05:12 EST 2018. Contains 299330 sequences. (Running on oeis4.)