login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A054770
Numbers that are not the sum of distinct Lucas numbers 1,3,4,7,11, ... (A000204).
16
2, 6, 9, 13, 17, 20, 24, 27, 31, 35, 38, 42, 46, 49, 53, 56, 60, 64, 67, 71, 74, 78, 82, 85, 89, 93, 96, 100, 103, 107, 111, 114, 118, 122, 125, 129, 132, 136, 140, 143, 147, 150, 154, 158, 161, 165, 169, 172, 176, 179, 183, 187, 190, 194, 197, 201, 205, 208, 212
OFFSET
1,1
COMMENTS
Alternatively, Lucas representation of n includes L_0 = 2. - Fred Lunnon, Aug 25 2001
Conjecture: this is the sequence of numbers for which the base phi representation includes phi itself, where phi = (1 + sqrt(5))/2 = the golden ratio. Example: let r = phi; then 6 = r^3 + r + r^(-4). - Clark Kimberling, Oct 17 2012
This conjecture is proved in my paper 'Base phi representations and golden mean beta-expansions', using the formula by Wilson/Agol/Carlitz et al. - Michel Dekking, Jun 25 2019
Numbers whose minimal Lucas representation (A130310) ends with 1. - Amiram Eldar, Jan 21 2023
LINKS
L. Carlitz, R. Scoville, and V. E. Hoggatt, Jr., Lucas representations, Fibonacci Quart. 10 (1972), 29-42, 70, 112.
Weiru Chen and Jared Krandel, Interpolating Classical Partitions of the Set of Positive Integers, arXiv:1810.11938 [math.NT], 2018. See sequence D2 p. 4.
Michel Dekking, Base phi representations and golden mean beta-expansions, arXiv:1906.08437 [math.NT], 2019.
Jared Krandel and Weiru Chen, Interpolating classical partitions of the set of positive integers, The Ramanujan Journal (2020).
FORMULA
a(n) = floor(((5+sqrt(5))/2)*n)-1 (conjectured by David W. Wilson; proved by Ian Agol (iagol(AT)math.ucdavis.edu), Jun 08 2000)
a(n) = A000201(n) + 2*n - 1. - Michel Dekking, Sep 07 2017
G.f.: x*(x+1)/(1-x)^2 + Sum_{i>=1} (floor(i*phi)*x^i), where phi = (1 + sqrt(5))/2. - Iain Fox, Dec 19 2017
Ian Agol tells me that David W. Wilson's formula is proved in the Carlitz, Scoville, Hoggatt paper 'Lucas representations'. See Equation (1.12), and use A(A(n))+n = B(n)+n-1 = A(n)+2*n-1, the well known formulas for the lower Wythoff sequence A = A000201, and the upper Wythoff sequence B = A001950. - Michel Dekking, Jan 04 2018
MAPLE
A054770 := n -> floor(n*(sqrt(5)+5)/2)-1;
MATHEMATICA
Complement[Range[220], Total/@Subsets[LucasL[Range[25]], 5]] (* Harvey P. Dale, Feb 27 2012 *)
Table[Floor[n (Sqrt[5] + 5) / 2] - 1, {n, 60}] (* Vincenzo Librandi, Oct 30 2018 *)
PROG
(PARI) a(n)=floor(n*(sqrt(5)+5)/2)-1
(Magma) [Floor(n*(Sqrt(5)+5)/2)-1: n in [1..60]]; // Vincenzo Librandi, Oct 30 2018
(Python)
from math import isqrt
def A054770(n): return (n+isqrt(5*n**2)>>1)+(n<<1)-1 # Chai Wah Wu, Aug 17 2022
CROSSREFS
Complement of A063732.
Sequence in context: A184869 A047276 A171639 * A184745 A113689 A190707
KEYWORD
nonn,easy
AUTHOR
Antreas P. Hatzipolakis (xpolakis(AT)otenet.gr), May 28 2000
EXTENSIONS
More terms from James A. Sellers, May 28 2000
STATUS
approved