The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A054770 Numbers that are not the sum of distinct Lucas numbers 1,3,4,7,11 ... (A000204). 13
 2, 6, 9, 13, 17, 20, 24, 27, 31, 35, 38, 42, 46, 49, 53, 56, 60, 64, 67, 71, 74, 78, 82, 85, 89, 93, 96, 100, 103, 107, 111, 114, 118, 122, 125, 129, 132, 136, 140, 143, 147, 150, 154, 158, 161, 165, 169, 172, 176, 179, 183, 187, 190, 194, 197, 201, 205, 208, 212 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Alternatively, Lucas representation of n includes L_0 = 2. - Fred Lunnon, Aug 25 2001 Conjecture: this is the sequence of numbers for which the base phi representation includes phi itself, where phi = (1 + sqrt(5))/2 = the golden ratio. Example: let r = phi; then 6 = r^3 + r + r^(-4). - Clark Kimberling, Oct 17 2012 This conjecture is proved in my paper 'Base phi representations and golden mean beta-expansions', using the formula by Wilson/Agol/Carlitz et al. - Michel Dekking, Jun 25 2019 LINKS G. C. Greubel, Table of n, a(n) for n = 1..5000 L. Carlitz, R. Scoville, and V. E. Hoggatt, Jr., Lucas representations, Fibonacci Quart. 10 (1972), 29-42, 70, 112. Weiru Chen, Jared Krandel, Interpolating Classical Partitions of the Set of Positive Integers, arXiv:1810.11938 [math.NT], 2018. See sequence D2 p. 4. M. Dekking, Base phi representations and golden mean beta-expansions, arXiv:1906.08437 [math.NT], 2019. Jared Krandel, Weiru Chen, Interpolating classical partitions of the set of positive integers, The Ramanujan Journal (2020). FORMULA a(n) = floor(((5+sqrt(5))/2)*n)-1 (conjectured by David W. Wilson; proved by Ian Agol (iagol(AT)math.ucdavis.edu), Jun 08 2000) a(n) = A000201(n) + 2*n - 1. - Michel Dekking, Sep 07 2017 G.f.: x*(x+1)/(1-x)^2 + Sum_{i>=1} (floor(i*phi)*x^i), where phi = (1 + sqrt(5))/2. - Iain Fox, Dec 19 2017 Ian Agol tells me that David W. Wilson's formula is proved in the Carlitz, Scoville, Hoggatt paper 'Lucas representations'. See Equation (1.12), and use A(A(n))+n = B(n)+n-1 = A(n)+2*n-1, the well known formulas for the lower Wythoff sequence A = A000201, and the upper Wythoff sequence B = A001950. - Michel Dekking, Jan 04 2018 MAPLE A054770 := n -> floor(n*(sqrt(5)+5)/2)-1; MATHEMATICA Complement[Range[220], Total/@Subsets[LucasL[Range[25]], 5]] (* Harvey P. Dale, Feb 27 2012 *) Table[Floor[n (Sqrt[5] + 5) / 2] - 1, {n, 60}] (* Vincenzo Librandi, Oct 30 2018 PROG (PARI) a(n)=floor(n*(sqrt(5)+5)/2)-1 (MAGMA) [Floor(n*(Sqrt(5)+5)/2)-1: n in [1..60]]; // Vincenzo Librandi, Oct 30 2018 CROSSREFS Cf. A003263, A003622, A022342. Complement of A063732. Sequence in context: A184869 A047276 A171639 * A184745 A113689 A190707 Adjacent sequences:  A054767 A054768 A054769 * A054771 A054772 A054773 KEYWORD nonn,easy AUTHOR Antreas P. Hatzipolakis (xpolakis(AT)otenet.gr), May 28 2000 EXTENSIONS More terms from James A. Sellers, May 28 2000 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 6 14:04 EDT 2020. Contains 334827 sequences. (Running on oeis4.)