login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A054766 a(n+2) = (2*n + 3)*a(n+1) + (n + 1)^2*a(n), a(0) = 1, a(1) = 0. 5
1, 0, 1, 5, 44, 476, 6336, 99504, 1803024, 37019664, 849418560, 21539756160, 598194037440, 18056575823040, 588622339549440, 20609136708249600, 771323264354361600, 30729606721005830400, 1298448658633614566400 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

Numerators of the convergents of the generalized continued fraction expansion 4/Pi - 1 = [0; 1/3, 4/5, 9/7,..., n^2/(2*n + 1),...] = 1/(3 + 4/(5 + 9/(7 + ...))). The first 4 convergents are 1/3, 5/19, 44/160 and 476/1744.

LINKS

Indranil Ghosh, Table of n, a(n) for n = 0..392

K. S. Brown, Integer Sequences Related To Pi

FORMULA

a(n) ~ (1 - Pi/4) * (1 + sqrt(2))^(n + 1/2) * n^n / (2^(1/4) * exp(n)). - Vaclav Kotesovec, Feb 18 2017

MATHEMATICA

RecurrenceTable[{a[n+2] == (2*n+3)*a[n+1] + (n+1)^2*a[n], a[0] == 1, a[1] == 0}, a, {n, 0, 25}] (* Vaclav Kotesovec, Feb 18 2017 *)

t={1, 0}; Do[AppendTo[t, (2(n-2)+3)*t[[-1]]+(n-1)^2*t[[-2]]], {n, 2, 18}]; t (* Indranil Ghosh, Feb 25 2017 *)

CROSSREFS

Cf. A012244, A054765.

Sequence in context: A222508 A220841 A343425 * A252830 A301434 A232192

Adjacent sequences: A054763 A054764 A054765 * A054767 A054768 A054769

KEYWORD

nonn,easy,frac

AUTHOR

N. J. A. Sloane, May 26 2000

EXTENSIONS

More terms from James A. Sellers, May 27 2000

Definition expanded by Al Hakanson (hawkuu(AT)gmail.com), Dec 01 2008

Keyword frac added by Michel Marcus, Feb 25 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 30 05:38 EST 2022. Contains 358431 sequences. (Running on oeis4.)