OFFSET
0,4
COMMENTS
Numerators of the convergents of the generalized continued fraction expansion 4/Pi - 1 = [0; 1/3, 4/5, 9/7,..., n^2/(2*n + 1),...] = 1/(3 + 4/(5 + 9/(7 + ...))). The first 4 convergents are 1/3, 5/19, 44/160 and 476/1744.
LINKS
Indranil Ghosh, Table of n, a(n) for n = 0..392
K. S. Brown, Integer Sequences Related To Pi
FORMULA
a(n) ~ (1 - Pi/4) * (1 + sqrt(2))^(n + 1/2) * n^n / (2^(1/4) * exp(n)). - Vaclav Kotesovec, Feb 18 2017
MATHEMATICA
RecurrenceTable[{a[n+2] == (2*n+3)*a[n+1] + (n+1)^2*a[n], a[0] == 1, a[1] == 0}, a, {n, 0, 25}] (* Vaclav Kotesovec, Feb 18 2017 *)
t={1, 0}; Do[AppendTo[t, (2(n-2)+3)*t[[-1]]+(n-1)^2*t[[-2]]], {n, 2, 18}]; t (* Indranil Ghosh, Feb 25 2017 *)
CROSSREFS
KEYWORD
nonn,easy,frac
AUTHOR
N. J. A. Sloane, May 26 2000
EXTENSIONS
More terms from James A. Sellers, May 27 2000
Definition expanded by Al Hakanson (hawkuu(AT)gmail.com), Dec 01 2008
Keyword frac added by Michel Marcus, Feb 25 2017
STATUS
approved