login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A107733
Column 2 of the array in A107735.
1
1, 3, 13, 11, 141, 43, 1485, 171, 15565, 683, 163021, 2731, 1707213, 10923, 17878221, 43691, 187223245, 174763, 1960627405, 699051, 20531956941, 2796203, 215013444813, 11184811, 2251650026701, 44739243, 23579585203405, 178956971, 246928622013645, 715827883, 2585870100909261, 2863311531
OFFSET
3,2
COMMENTS
The second bisection [3, 11, 43, 171, 683, ...] is A007583. - Jean-François Alcover, Oct 22 2019 [noticed by Paul Curtz in a private e-mail].
REFERENCES
S. Mukai, An Introduction to Invariants and Moduli, Cambridge, 2003; see p. 483.
FORMULA
a(n) = 1 + Sum_{j=1..g} 2^(2j-1) if n = 2g+2, = 1 + 4 Sum_{j=1..g} C(2g+1, 2j) 5^(j-1) if n = 2g+1.
From Chai Wah Wu, Jun 19 2016: (Start)
a(n) = 17*a(n-2) - 80*a(n-4) + 128*a(n-6) - 64*a(n-8) for n > 10.
G.f.: x^3*(-64*x^7 + 96*x^5 - 40*x^3 - 4*x^2 + 3*x + 1)/(64*x^8 - 128*x^6 + 80*x^4 - 17*x^2 + 1). (End)
MATHEMATICA
LinearRecurrence[{0, 17, 0, -80, 0, 128, 0, -64}, {1, 3, 13, 11, 141, 43, 1485, 171}, 32] (* Jean-François Alcover, Oct 22 2019 *)
CROSSREFS
Sequence in context: A360967 A214811 A121565 * A273076 A272825 A054767
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jun 10 2005
EXTENSIONS
More terms from Emeric Deutsch, Jun 22 2005
STATUS
approved