login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A107732
Column 1 of the array in A107735.
3
1, 2, 5, 4, 21, 8, 85, 16, 341, 32, 1365, 64, 5461, 128, 21845, 256, 87381, 512, 349525, 1024, 1398101, 2048, 5592405, 4096, 22369621, 8192, 89478485, 16384, 357913941, 32768, 1431655765, 65536, 5726623061, 131072, 22906492245, 262144, 91625968981, 524288, 366503875925
OFFSET
3,2
REFERENCES
S. Mukai, An Introduction to Invariants and Moduli, Cambridge, 2003; see p. 483.
FORMULA
a(2*k+2) = 2^k = A000079(k), a(2*k+1) = (4^k-1)/3 = A002450(k) = A001045(2*k).
a(n) = 7*a(n-2) - 14*a(n-4) + 8*a(n-6) for n > 8. - Chai Wah Wu, Jun 19 2016
G.f.: x^3*(1 + 2*x - 2*x^2 - 10*x^3 + 8*x^5)/(1 - 7*x^2 + 14*x^4 - 8*x^6). - Chai Wah Wu, Jun 19 2016
a(n) = (3*(1 + (-1)^n)*2^(n/2) - (1 - (-1)^n)*(2 - 2^n))/12. - Colin Barker, Mar 26 2019
a(n) = (2^n - 2)/6 if n is odd else 2^(n/2 - 1). - Peter Luschny, Mar 26 2019
MATHEMATICA
Table[(3 (1 + (-1)^n) 2^(n/2) - (1 - (-1)^n) (2 - 2^n))/12, {n, 3, 50}] (* Bruno Berselli, Mar 26 2019 *)
PROG
(PARI) Vec(x^3*(1 + 2*x - 2*x^2 - 10*x^3 + 8*x^5) / ((1 - x)*(1 + x)*(1 - 2*x)*(1 + 2*x)*(1 - 2*x^2)) + O(x^40)) \\ Colin Barker, Mar 26 2019
(Sage)
def a(n): return (2^n-2)//6 if is_odd(n) else 2^(n//2-1))
print([a(n) for n in (3..41)]) # Peter Luschny, Mar 26 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Jun 10 2005
EXTENSIONS
More terms from Chai Wah Wu, Jun 19 2016
STATUS
approved